

GRIPLINK CONTROLLER

UNIFIED COMMAND SET

REFERENCE MANUAL

Protocol Version 1

August 2024

- 1 -

Content

1 Introduction .. 3

1.1 Connecting to the GRIPLINK Controller .. 3

1.2 Communicating with the GRIPLINK Controller .. 3

1.3 Port count ... 4

1.4 Error handling ... 4

1.5 Connecting to the command interface using PuTTY .. 5

1.5.1 Connecting from a computer or laptop ... 5

1.5.2 Connecting from a robot controller ... 8

1.6 Routing of commands ... 8

2 Command Format Description ... 10

2.1 System Information .. 11

2.1.1 Identify controller type – ID ... 11

2.1.2 Identify protocol version – PROTOCOL .. 12

2.1.3 Assert protocol version – PROTASSERT .. 13

2.1.4 Read serial number of the GRIPLINK Controller – SN .. 14

2.1.5 GRIPLINK Controller label – LABEL ... 15

2.1.6 Read firmware version of the GRIPLINK Controller – VER ... 16

2.1.7 Verbose mode – VERBOSE ... 17

2.2 Device Information ... 18

2.2.1 Read device Vendor-ID – DEVVID... 18

2.2.2 Read device Product ID – DEVPID .. 19

2.2.3 Assert type of connected device – DEVASSERT ... 20

2.2.4 Retrieve device name – DEVNAME .. 21

2.2.5 Retrieve device vendor name – DEVVENDOR .. 22

2.2.6 Read serial number of a device – DEVSN ... 23

2.2.7 Read application tag of a device – DEVTAG ... 24

2.2.8 Read firmware version of a device – DEVVER .. 25

2.3 Controller Commands ... 26

2.3.1 Close connection – BYE .. 26

2.4 Device Commands... 27

2.4.1 Enable device – ENABLE ... 27

2.4.2 Disable device – DISABLE ... 28

2.4.3 Perform a homing sequence – HOME .. 29

2.4.4 Grip with the selected grip preset – GRIP .. 30

2.4.5 Release with the selected grip preset – RELEASE .. 31

2.4.6 Flexible gripping using motion parameters – FLEXGRIP .. 32

2.4.7 Flexible releasing using motion parameters – FLEXRELEASE ... 33

2.4.8 Set LED visualization – LED ... 34

- 2 -

2.4.9 Control the force retention feature – CLAMP .. 35

2.4.10 Wait for State Transition and Return – WSTR .. 36

2.4.11 Set value – SETVAL ... 37

2.4.12 Wait for indexed value to reach/cross threshold – WAITVAL .. 38

2.5 Multi-Device Commands ... 42

2.5.1 Grip with selected devices – MGRIP .. 42

2.5.2 Release with selected devices – MRELEASE ... 43

2.5.3 Wait for state transition on multiple devices – MWAITFOR .. 44

2.6 Device status and diagnosis ... 45

2.6.1 Get device state – DEVSTATE ... 45

2.6.2 Get value – VALUE .. 46

2.7 Device Configuration ... 47

2.7.1 Grip configuration – GRIPCFG .. 47

3 Status and error codes .. 49

4 Device status codes ... 51

5 Supported commands by device class .. 52

6 List of Product and Vendor IDs .. 54

- 3 -

1 Introduction

The GRIPLINK controller is intended to connect IO-Link based sensor and actuator devices to a wide

range of industrial robot controllers using a standard TCP/IP networking interface. The GRIPLINK Con-

troller converts a generic command set into the sensor’s or actuator’s IO-Link commands using its

unique device driver architecture. A list of all supported devices can be found at

www.griplink.de/devices

This manual describes the text-based Unified Command Protocol that is used to control the connected

modules via a TCP/IP socket connection. The following chapters provide a detailed explanation of the

protocol itself as well as of the GRIPLINK controller’s Unified Command Set. To get started with the

communication protocol, we recommend using a common Telnet client like the free PuTTY1 for Win-

dows as described in chapter 1.5.

Weiss Robotics already provides extensively tested GRIPLINK Plug-Ins for various robot platforms. A

list of the supported robot platforms can be found at

www.griplink.de/plugins

 If you intend to use GRIPLINK for a robotic system that is already supported by a GRIPLINK-

Plugin, please refer to the respective GRIPLINK-Plugin Manual.

1.1 Connecting to the GRIPLINK Controller

Before connecting to the module, an appropriate IP address must be set using the GRIPLINK Control-

ler’s web interface. Connect the GRIPLINK Controller to the local network or directly to your com-

puter’s network interface and point your favorite web browser to the GRIPLINK Controller’s IP address

e.g., by typing the default http://192.168.1.40 into the address bar and pressing <Enter>. Please make

sure that your computer’s network settings are appropriate.

The GRIPLINK Controller’s IP address can be configured by choosing ″Config″ from the buttons on the

top of the main page.

1.2 Communicating with the GRIPLINK Controller

The GRIPLINK Controller communicates with its client using a text-based protocol. The following chap-

ters describe the general format of these commands.

1 http://www.putty.org/

http://www.griplink.de/devices
http://www.griplink.de/plugins
http://192.168.1.40/

- 4 -

The module expects commands being submitted as plain ASCII strings. Each command must be termi-

nated by a line feed character (‘\n’ or ASCII code 0x0a). Return messages are submitted in the same

format and are terminated by a line feed character, too.

 Please note that the commands of the GRIPLINK Controller are not case sensitive, i.e. sending

″grip(0,1)″ is the same as ″GRIP(0,1)″ or ″gRiP(0,1)″. However, it is good practice to send com-

mands in upper case notation. Response messages from the GRIPLINK Controller will always be

sent in upper case notation.

1.3 Port count

As the number of ports differ by the different versions of the GRIPLINK compatible hardware used, this

manual uses a generic placeholder PORTS for the number of physical device ports, see the following

table for common hardware platforms.

Hardware PORTS

GRIPLINK-ET4 4

WPG Series 1

Table 1: Number of ports depending on device

See your GRIPLINK controller’s manual for any information about the number of ports, if not included

in this table.

1.4 Error handling

In case of an error, the module returns a message string of the following format:

ERR <error_code>

where <error_code> represents a number referencing an error code. Chapter 3 gives an overview of

all available error codes.

If verbose mode is active (cf. chapter 2.1.7), the module submits extended error messages containing

an additional text string that describes the type of error:

ERR <error_code> <description_string>

 See chapter 3 for a description of the returned error code.

See chapter 2.1.7 on how to enable verbose mode.

- 5 -

1.5 Connecting to the command interface using PuTTY

1.5.1 Connecting from a computer or laptop

PuTTY is a free Telnet and SSH client that can be used to connect to the GRIPLINK Controller’s command

interface e.g., for testing purposes or to learn the communication protocol. The following chapter

shows how to use PuTTY with the GRIPLINK Controller on Windows. On Unix-like systems (Linux, Mac),

you can use command line tools like netcat (nc) instead.

 The default IP address depends on the selected device, see Table 2. The default TCP/IP listening

port is always 10001.

Hardware Default IP Address

GRIPLINK-ET4 192.168.1.40

WPG Series 192.168.1.50

Table 2: Default IP Addresses depending on device

Download and install PuTTY for Windows from http://www.putty.org.

After starting PuTTY, a new connection must be configured. Type in the IP address and port number of

the module and set the connection type to ″raw″ (see Figure 1).

As the module does not send a carriage return character (‘\r’ or ASCII code 0x0d) in its response mes-

sages, PuTTY must be configured to explicitly do a carriage return on each line feed character. In the

settings window, select the ″Terminal″ tab and enable ″Implicit CR in every LF″ (see Figure 2).

Now click the ″Open″ button to open the connection. A new and empty terminal window will appear

(Figure 3), ready to type in your commands.

Typing ″HOME(0)″ for example, followed by <Enter>, will execute a homing sequence on the gripper

device connected to port 0 (see chapter 2.4.1).

http://www.putty.org/

- 6 -

Figure 1: PuTTY session settings

Figure 2: PuTTY terminal settings

- 7 -

Figure 3: PuTTY terminal window

- 8 -

1.5.2 Connecting from a robot controller

The text-based message protocol described in this manual is intended to control devices from a robot

controller. Nowadays, almost every robot controller is able to open up network connections (usually

called socket connections) to exchange data with remote hosts like a computer or the GRIPLINK Con-

troller. Please refer to the documentation of your robot controller or ask the robot manufacturer to

find out how to use network connections from your robot program and how to send and receive text-

based messages.

WEISS ROBOTICS also provides ready-to-use implementations for some robot systems. Please ask our

sales and support teams if there is a turnkey solution for your setup.

1.6 Routing of commands

GRIPLINK Controller supports routing of incoming commands, so that multiple GRIPLINK Controllers

can form a “virtual controller network” that behaves like a single large GRIPLINK controller towards

the host side (i.e. the robot). The routing depends on the configuration of the GRIPLINK controller

network, see the GRIPLINK Controller manual for details.

The GRIPLINK Controller can be configured to play one of three roles:

• Master

• Slave

• Stand-alone

Master mode

In Master mode, up to seven slaves can be assigned to one GRIPLINK Controller. Every slave controller

has exactly 4 logical ports that will be mapped to its physical ports. If the slave controller has less than

four ports available, the higher ports are left unused and show up as “INVALID” when querying their

state.

Example 1

Assuming a virtual GRIPLINK Controller network consisting of one GRIPLINK-ET4 master and seven

GRIPLINK-ET4 slave controllers, the ports are assignment as follows:

Master Ports 0 to 3

Slave #1 Ports 4 to 7

Slave #2 Ports 8 to 11

Slave #3 Ports 12 to 15

Slave #4 Ports 16 to 19

Slave #5 Ports 20 to 23

Slave #6 Ports 24 to 27

Slave #7 Ports 28 to 31

The lowest numbered ports are mapped to the Controller’s own hardware, while ports with index > 3

will be routed to the pre-configured slave GRIPLINK Controllers over Ethernet.

- 9 -

Example 2

A network of a GRIPLINK-ET4 master and two WPG Series grippers using the GRIPLINK protocol will use

the following port assignment:

Master Ports 0 to 3

Slave #1 (WPG Series Gripper) Port 4, Ports 5 to 7 are unused

Slave #2 (WPG Series Gripper) Port 8, Ports 9 to 11 are unused

 Ports 12 to 31 are unused

Slave mode

In Slave mode, the GRIPLINK Controller will only accept incoming connections from its pre-configured

Master GRIPLINK Controller. All other connection attempts will be rejected.

Stand-Alone mode

In Stand-Alone mode, routing is disabled and only the local ports can be accessed.

- 10 -

2 Command Format Description

Commands that are sent to the GRIPLINK Controller have to be terminated with a Line Feed character

(LF, 0x0A). Other non-printable characters with ASCII codes 0x01 to 0x1F will be replaced by

whitespace characters. Therefore, additional Carriage Return characters (CR, 0x0D) that are automat-

ically sent by some host platforms will be ignored.

Response messages from the GRIPLINK Controller will always be terminated with a Line Feed character

(0x0A).

Example

Read the identification string of the connected GRIPLINK Controller.

Command: "ID?"[CR][LF] [CR] will be ignored!

Response: "GRIPLINK-ET4"[LF]

Notation and Data Types

The following data types are used in the command description:

<string> Character string. Always within double quotes (″)

<int> Signed integer value

<uint> Unsigned integer value

<bool> Boolean value, represented as integer, i.e., 0 or 1.

- 11 -

2.1 System Information

The following commands can be used to query information about the GRIPLINK Controller.

2.1.1 Identify controller type – ID

Read device type of the GRIPLINK Controller. This command returns the identification character string

of the GRIPLINK Controller and can be used to distinguish different types.

Syntax

ID?

Parameters

-

Response Message

ID=<idstring>

<idstring> String ID of this GRIPLINK Controller.

Example

Ask the connected GRIPLINK Controller for its identification string.

Command: ID?

Response: ID=″GRIPLINK-ET4″

- 12 -

2.1.2 Identify protocol version – PROTOCOL

Read the version of the GRIPLINK protocol used by this GRIPLINK Controller to determine the capabil-

ities of the interface.

Syntax

PROTOCOL?

Parameters

-

Response Message

PROTOCOL=”GRIPLINK-V<pversion>”

<pversion> Protocol version of this GRIPLINK Controller including the protocol identifier.

Example

Ask the connected GRIPLINK Controller for its GRIPLINK protocol version.

Command: PROTOCOL?

Response: PROTOCOL=”GRIPLINK-V1”

- 13 -

2.1.3 Assert protocol version – PROTASSERT

Assert a specific protocol with a given minimum version is running on the GRIPLINK controller.

Syntax

PROTASSERT(<protidentifier>,<minversion>)

Parameters

<protidentifier> Protocol identifier string with enclosing quotation marks (“)

<minversion> Minimum version of the protocol running on the controller.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Assert a GRIPLINK protocol with minimum version 1.

Command: PROTASSERT(“GRIPLINK”,1)

Response on success: ACK

Response if asserted protocol is not supported: ERR 20

- 14 -

2.1.4 Read serial number of the GRIPLINK Controller – SN

Read the serial number of GRIPLINK Controller.

Syntax

SN?

Parameters

-

Response Message

SN=<snstring>

<snstring> Serial number string

Example

Ask for the serial number of the connected GRIPLINK Controller.

Command: SN?

Response: SN=″123456″

- 15 -

2.1.5 GRIPLINK Controller label – LABEL

Set or gead the device label of GRIPLINK Controller. The device label can be used to identify a certain

GRIPLINK Controller in a larger network of devices.

Syntax

Assign: LABEL=<label>

Query: LABEL?

Parameters

<label> String label (32 characters max) to be set.

Response Message

LABEL=<label>

Example

1) Ask for the label of the connected GRIPLINK Controller.

Command: LABEL?

Response: LABEL=″Hello World″

2) Set the label of the connected GRIPLINK Controller to ″Marvin″

Command: LABEL=″Marvin″

Response: LABEL=″Marvin″

- 16 -

2.1.6 Read firmware version of the GRIPLINK Controller – VER

Read the firmware version of GRIPLINK Controller. The version is returned as string containing a 3-

element version number.

Syntax

VER?

Parameters

-

Response Message

VER=<version>

<version> Version number string

Example

Query the device version:

Command: VER?

Response: VER=″4.0.0″

- 17 -

2.1.7 Verbose mode – VERBOSE

Decodes any returned error codes into a human readable string. Example:

The response ″ERR 04″ turns into ″ERR 04 The device is not initialized″.

Syntax

VERBOSE=<enable>

Parameters

<enable> 0: disable verbose mode

 1: enable verbose mode

Response Message

VERBOSE=<enable>

Example

Enable Verbose Mode:

Command: VERBOSE=1

Response: VERBOSE=1

- 18 -

2.2 Device Information

The following commands can be used to gather information about the connected field devices.

2.2.1 Read device Vendor-ID – DEVVID

Read the Vendor ID of the connected device. This command returns the Vendor ID as assigned by the

IO-Link Association of the device connected to the given port.

 See Chapter 6 for a list with Vendor- and Product IDs.

Syntax

DEVVID[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVVID[<uint>]=<vid>

<vid> Vendor ID as assigned by the IO-Link Association (range 1 to 65535). (-1) is returned,

if no device was found at the specified port.

Example

Read the Vendor ID of the device connected to GRIPLINK Controller port 2 (Device is IEG 55 gripper

with Vendor ID 815):

Command: DEVVID[2]?

Response: DEVVID[2]=815

- 19 -

2.2.2 Read device Product ID – DEVPID

Read the Product ID of the connected device. This command returns the Product ID as assigned by the

vendor of the device connected to the given port (i.e. the IO-Link Device ID or Product ID for non-IO-

Link devices).

 See Chapter 6 for a list with Vendor- and Product IDs.

Syntax

DEVPID[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVPID[<uint>]=<pid>

<pid> Product ID as assigned by the device vendor (range 1 to 33.554.431).

Error codes

In case of an error, one of the following codes will be returned. Error codes different to this error

will indicate protocol and/or parameter errors.

ERR 04 No device connected or device not supported (E_NOT_INITIALIZED)

ERR 11 Port index outside the allowed range (E_INDEX_OUT_OF_BOUNDS)

Example

Read the Product ID of the device connected to GRIPLINK Controller port 2 (Device is IEG 55 grip-

per with Product ID 20):

Command: DEVPID[2]?

Response: DEVPID[2]=20

- 20 -

2.2.3 Assert type of connected device – DEVASSERT

This function expects a device identification based on Vendor and Product ID and checks, if this de-
vice is connected to the specified port. The function returns an error, if either a different device is
connected or no device is connected.

 See Chapter 6 for a list with Vendor- and Product IDs.

Syntax

DEVASSERT(<port>,<vid>,<pid>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<vid> Vendor ID of the expected device. The Vendor ID is assigned to the manufacturer by

the IO-Link Association.

<pid> Product ID of the expected device. This equals the Device ID the vendor has assigned

to its device.

Response Message

ACK if the specified device was found or ERR 25 (E_CMD_FAILED) if not. Error codes different to

this error will indicate protocol and/or parameter errors.

Example

The robot program expects a WEISS ROBOTICS IEG 55 servo gripper (Vendor ID = 815, Product ID

= 20) to be connected at port 0:

Command: DEVASSERT(0,815,20)

Response: ACK

- 21 -

2.2.4 Retrieve device name – DEVNAME

Retrieve the IO-Link ″ProductName″ identification character string as reported from the device con-

nected to the given port.

Syntax

DEVNAME[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVNAME[<uint>]=<name>

<name> Device name as string

Example

Read the name of the device connected to GRIPLINK Controller port 1:

Command: DEVNAME [1]?

Response: DEVNAME [1]=″IEG 55-020″

- 22 -

2.2.5 Retrieve device vendor name – DEVVENDOR

Retrieve the IO-Link ″VendorName″ identification character string as reported from the device con-

nected to the given port.

Syntax

DEVVENDOR[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVVENDOR[<uint>]=<vendor>

<vendor> Vendor name as string

Example

Read the name of the device connected to GRIPLINK Controller port 1:

Command: DEVVENDOR [1]?

Response: DEVVENDOR [1]=″WEISS ROBOTICS″

- 23 -

2.2.6 Read serial number of a device – DEVSN

Read the serial number (IO-Link ″SerialNumber″ value) of the device connected to the given port. The

serial number is a device-specific string that can contain alpha-numeric characters. See the device

specifications for details.

Syntax

DEVSN[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVSN[<port>]=<snstring>

<snstring> Serial number in string format

Example

Read the name of the device connected to GRIPLINK Controller port 1:

Command: DEVSN[1]?

Response: DEVSN[1]=″000042″

- 24 -

2.2.7 Read application tag of a device – DEVTAG

Get or set the application tag of a device. This tag can be used e.g., to identify the device in a larger

assembly. The tag is transferred to the device as ″Application Tag″ and is stored using the IO-Link data

storage mechanism. If the connected device doesn’t support application tags, the function will return

an error.

Syntax

Assign: DEVTAG[<port>]=<label>

Query: DEVTAG[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<label> String label (32 characters max) to be set.

Response Message

DEVTAG[<port>]=<label>

Example

1) Retrieve the label of the device connected to port 1.

Command: DEVTAG[1]?

Response: DEVTAG[1]=″Hello World″

2) Change the label of the device connected to port 1 to ″Device 1″

Command: DEVTAG[1]=″Device 1″

Response: DEVTAG[1]=″Device 1″

- 25 -

2.2.8 Read firmware version of a device – DEVVER

Return the firmware version of a selected device. The content of the returned version string is device-

specific (IO-Link parameter ″SWVersion″). See the device manual for details.

Syntax

DEVVER [<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVVER[<port>]=<version>

<version> Version string

Example

Retrieve the version information of the device connected to port 3.

Command: DEVVER[3]?

Response: DEVVER[3]=″1.0.1-RC2″

- 26 -

2.3 Controller Commands

2.3.1 Close connection – BYE

Close the connection from the client side. BYE should be sent at the end of a session to gracefully close

the connection. The server will respond with an ACK and will close the connection afterwards.

Syntax

BYE()

Parameters

-

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Close current session:

Command: BYE()

Response: ACK

[Server closes connection]

[Client can close socket]

- 27 -

2.4 Device Commands

All device commands return ACK if the command has been received correctly. They return ERR <ER-

RORCODE> if an error occurred, where <ERRORCODE> indicates the specific error. See Chapter 3 for a

list of error codes.

2.4.1 Enable device – ENABLE

Enables the selected device. The action performed by this command depends on the connected device,

see the device documentation for details.

 Grippers by WEISS ROBOTICS: The device will be (re-)enabled automatically when executing a

GRIP(), RELEASE() or HOME() command.

Syntax

ENABLE(<port>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Enable the device connected to port 2:

Command: ENABLE(2)

Response: ACK

- 28 -

2.4.2 Disable device – DISABLE

Disables the selected device. The result depends on the connected device, see the device documenta-

tion for details.

Grippers by WEISS ROBOTICS: This function will disable the actuator thus allowing to move the fingers

by hand.

Syntax

DISABLE(<port>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Disable the device connected to port 2:

Command: DISABLE(2)

Response: ACK

- 29 -

2.4.3 Perform a homing sequence – HOME

Perform a homing sequence for the given device. On grippers, this command will move the fingers to

either inner or outer mechanical limit to reference its position, depending on the gripper’s configura-

tion. See the device manual for further details.

The function will block until the homing sequence is completed and returns the result of that opera-

tion.

Syntax

HOME(<port>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Home the gripper connected to port 0:

Command: HOME(0)

Response: ACK

- 30 -

2.4.4 Grip with the selected grip preset – GRIP

Perform a grip with the given grip recipe/preset. The command returns immediately after starting the

gripping process. To determine the result, periodically read the device state (device state polling) that

will change to

 DS_HOLDING If a workpiece was found and the gripping force is applied

 DS_NO_PART If the fingers reached the ″No Part Position″ without gripping

 DS_FAULT In case of a fault during motion

Syntax

GRIP(<port>,<index>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<index> Grip index. The number of available recipes/presets depends on the connected de-

vice.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Grip a workpiece with the gripper on port 2 that was freshly homed using recipe 3:

Command: GRIP(2,3)

Response: ACK

Poll the device state to determine the end of the gripping process. Be aware that the start state

can be different to DS_IDLE and depends on the command issued before:

DEVSTATE[2]?

->DEVSTATE[2]=2 (= DS_IDLE)

DEVSTATE[2]?

->DEVSTATE[2]=2 (= DS_IDLE)

…

DEVSTATE[2]?

->DEVSTATE[2]=5 (= DS_HOLDING)

- 31 -

2.4.5 Release with the selected grip preset – RELEASE

Perform release with the given grip index. The command returns immediately after starting to move

the fingers. To determine the end of the release process, periodically read the device state (device

state polling) that will change to

 DS_RELEASED If the fingers arrived at the ″Release Position″

 DS_FAULT In case of a fault during motion

Syntax

RELEASE(<port>,<index>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<index> Grip index. The number of available recipes/presets depends on the connected de-

vice.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Release the workpiece previously gripped the gripper on port 2 using recipe 3:

Command: RELEASE(2,3)

Response: ACK

Poll the device state to determine the end of the release process:

DEVSTATE[2]?

->DEVSTATE[2]=5 (= DS_HOLDING)

DEVSTATE[2]?

->DEVSTATE[2]=5 (= DS_HOLDING)

…

DEVSTATE[2]?

->DEVSTATE[2]=3 (= DS_RELEASED)

- 32 -

2.4.6 Flexible gripping using motion parameters – FLEXGRIP

Perform a grip operation using parameters for target position, gripping force in Newton, gripping

speed, and acceleration.

 This command is not available for all devices.

Syntax

FLEXGRIP(<port>,<position>,<force>,<speed>,<acceleration>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<position> Target position representing the No Part Limit.

Value given in 1/1000 mm.

<force> Gripping force.

 Value given in 1/1000 N.

<speed> Gripping speed.

Set to 0 for using the auto-computed speed value based on the selected grip-

ping force.

Value given in 1/1000 mm/s.

<acceleration> Gripping acceleration.

Set to 0 for using the default acceleration value.

Value given in 1/1000 mm/s².

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Grip a workpiece with 60 N which is larger than 15 mm with the gripper on port 2. Use a speed of

45 mm/s, standard acceleration:

Command: FLEXGRIP(2,15000,60000,45000,0)

Response: ACK

- 33 -

2.4.7 Flexible releasing using motion parameters – FLEXRELEASE

Perform a release operation using parameters for target position, gripping speed, and acceleration.

This command also can be used to pre-position grippers that support FLEX actions.

 This command is not available for all devices.

Syntax

FLEXRELEASE(<port>,<position>,<speed>,<acceleration>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<position> Target position representing the Release Limit.

Value given in 1/1000 mm.

<speed> Release speed.

Set to 0 for using the default release speed value.

Value given in 1/1000 mm/s.

<acceleration> Release acceleration.

Set to 0 for using the default acceleration value.

Value given in 1/1000 mm/s².

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Preposition the gripper at port 2 to 20 mm with default motion parameters, then grip at 5 mm

with 100 N using a speed of 20 mm/s. After handling the workpiece, release to 20 mm again:

Commands: FLEXRELEASE(2,20000,0,0)

 FLEXGRIP(2,5000,100000,20000,0)

 …

 FLEXRELEASE(2,20000,0,0)

- 34 -

2.4.8 Set LED visualization – LED

Some devices will provide the ability to visualize a certain state. This command allows to control this

visualization.

 This command is not available for all devices.

Syntax

LED(<port>,<index>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<index> Animation index

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

A WEISS ROBOTICS CRG 200-085 servo gripper is installed on port 1. Enable visualization 2 on this

gripper:

Command: LED(1,2)

Response: ACK

- 35 -

2.4.9 Control the force retention feature – CLAMP

Enables or disables the mechanical force retention feature of the connected device.

 This command is not available for all devices.

WEISS ROBOTICS grippers: The force retention feature can only be controlled manually if the

device is disabled. While the device is enabled, force retention will be controlled automatically

by the device.

Syntax

CLAMP(<port>, <enable>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<enable> Enable (1) or disable (0) force retention

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

A WEISS ROBOTICS CRG 200-085 gripper is installed on port 1. Enable the force retention feature:

Command: CLAMP(1,1)

Response: ACK

- 36 -

2.4.10 Wait for State Transition and Return – WSTR

This query can be used to detect the end of the previous state-manipulating command like GRIP, RE-

LEASE, HOME, etc. The query waits, until a device state transition occurs and returns the new device

state. If no state transition occurs, the query returns with a timeout error. When issuing the same

command twice, WSTR immediately returns with the current device state. WSTR only cares about ma-

nipulating commands. Non-manipulating commands like state queries or LED control are ignored.

Syntax

WSTR[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

WSTR[<port>]=<state>

<state> Device state, see table in chapter 4

ERR <ERRORCODE> in case of an error

Example

Wait for completion of the previous GRIP command with grip index 1 on port 0:

Commands: GRIP(0,1)

 WSTR[0]?

[now GRIPLINK blocks until state transition, i.e. GRIP command was finished]

Response: WSTR[0]=5 (= DS_HOLDING)

- 37 -

2.4.11 Set value – SETVAL

This function can be used to set a device value. The behavior strongly depends on the connected device

type and the value index.

The values selectable by the value index correspond to the values available in the VALUE query (cf.

chapter 2.6.2), i.e. the VALUE query can be used to read the corresponding values before setting them

with SETVAL. The SETVAL function can induce changes in the behavior of a device. On a WPG Series

gripping module, for example, the function can be used to pre-position the gripper jaws.

Syntax

SETVAL(<port>, <index>, <value>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<index> Value index (0..n-1)

The number of provided values depends on the connected device.

<value> Value to be set

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example

Pre-position the gripper jaws of a WPG 300-120 gripping module to an opening width of 100 mm:

Command: SETVAL(0, 0, 100000)

Response: ACK

[Now the WPG gripper will move to the given position]

You can use the WAITVAL query to block until the given value has been set, i. e. the desired posi-

tion has been reached.

- 38 -

2.4.12 Wait for indexed value to reach/cross threshold – WAITVAL

This function can be used to wait until the desired value has reached or crosses a threshold window.

The command returns a timeout error when the execution time exceeds the specified timeout.

 This command is not available for all devices.

Syntax

WAITVAL(<port>,<index>,<threshold>,<windowsize>,<timeout>)

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<index> Value index (0..n-1). The number of provided values depends on the connected

device.

<threshold> Target value threshold.

<windowsize> Size of the window around the threshold value to check for.

<timeout> Timeout in milliseconds.

 Must be set to a positive integer or 0.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Explanation

After calling WAITVAL, the selected device value will be polled periodically (corresponds to the

values v0, … vn-1, vn).

Case 1:

The polled values approach the window defined by threshold value vth and window size at the

lower boundary.

- 39 -

Vn

vth

Vwindow, lower

Vn-1

v

t
tn-1 tn

½ window size

ttimeout

If value vn is larger than the threshold value vth minus half the window size and the timeout dura-

tion has not been reached, yet, WAITVAL will return ACK.

Case 2:

The polled values approach the window defined by threshold value vth and window size at the

upper boundary.

Vn

Vwindow, upper

vth

Vn-1

v

t
tn-1 tn

½ window size

ttimeout

If value vn is less than the threshold value vth plus half the window size and the timeout duration

has not been reached, yet, WAITVAL will return ACK.

Case 3:

The polled values do not enter the window within the given timeout duration. Then, WAITVAL will

return ERR 05 (Timeout).

- 40 -

Example

Set value with index 0 of the device connected to port 0 to 300.

Then wait for value 0 to either be greater or less than 300 ± 50. Wait at most 10 seconds (10,000

milliseconds).

Commands: SETVAL(0,0,300000)

 WAITVAL(0,0,300000,50000,10000)

 For non-steady device values, the sampling time has to be considered in order to detect the

value change reliably.

This has to be tested in the real application!

Application example 1

Task

A WPG 300-120 is used for a pick and place application with rings that have to be gripped from

the outside and from the inside.

To switch from outside gripping to inside gripping, the gripper should be pre-positioned first.

Solution

1) When the gripper released the ring from the outer diameter douter and the robot moved to a

safe position, the gripper is pre-positioned to a position slightly smaller than the inner diame-

ter dinner.

SETVAL is used here to perform this operation.

The set-value 𝑣𝑠𝑒𝑡 is calculated as 𝑣𝑠𝑒𝑡 = (𝑑𝑖𝑛𝑛𝑒𝑟 − 𝑑𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) ⋅ 1000

2) Now, the robot shall wait until the target position is reached, to not collide with the workpiece

WAITVAL is used here to perform this operation.

The threshold value 𝑣𝑡ℎ is chosen to be the same as 𝑣𝑡ℎ. An appropriate window size of
1

2
⋅ 𝑑𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ⋅ 1000 should be used.

3) WAITVAL will block, until the position is reached or a timeout occurs

4) When WAITVAL returned ACK, the robot can safely move to the pick-position.

- 41 -

Application example 2

Task:

A conveyor belt transports boxes with variable heights (50 cm ≤ h ≤ 90 cm).

1) The robot program needs to detect, when a box enters and leaves a certain point at the belt.

2) The height of the box needs to be determined, too.

A laser distance sensor is mounted perpendicularly 1 m over the belt at the detection position and

measures the distance to the belt surface. It is connected to the GRIPLINK Controller.

Solution:

With the first call of WAITVAL (image A), the program waits until the sensor value crosses the value

of 0.5 m (box enters sensor spot, image B). Then, the application can process the box (time be-

tween B and C). At this point, the actual box size can be determined using the VALUE command.

With the second call of WAITVAL (image C), the program waits until the sensor value crosses the

value 0.5 m again, now in opposite direction (box has left the sensor spot, image D).

- 42 -

2.5 Multi-Device Commands

Multi-device commands allow to run the same command for a selected list of devices.

2.5.1 Grip with selected devices – MGRIP

Perform a grip with the selected grippers and with the indexed grip. The function returns immediately

after starting the gripping process. Use device state polling to determine the end of the gripping pro-

cess.

Syntax

MGRIP(<index>,<sel0>, …,<seln>)

Parameters

<index> Grip index.

<seln> Select (1) or deselect (0) device on port n.

Port number n will be 0 to (PORTS-1) in Stand-Alone mode and 0 to 31 in Mas-

ter mode. Trailing 0 parameters can be omitted.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example 1

Grip with grippers on port 0 and 1 using grip index 3:

Command: MGRIP(3,1,1,0,0) or MGRIP(3,1,1)

Response: ACK

Example 2

Grip with grippers on port 0, 1 and 5, 6 on a virtual GRIPLINK controller network of two GRIPLINK-

ET4 Controllers using grip index 3:

Command: MGRIP(3,1,1,0,0,0,1,1)

Response: ACK

- 43 -

2.5.2 Release with selected devices – MRELEASE

Perform release with the given grip preset on the selected devices. The function returns immediately

after starting the gripping process. Use device state polling to determine the end of the gripping pro-

cess.

Syntax

MRELEASE(<index>,<sel0>,…,<seln>)

Parameters

<index> Grip index.

<seln> Select (1) or deselect (0) device on port n.

Port number n will be 0 to (PORTS-1) in Stand-Alone mode and 0 to 31 in Mas-

ter mode. Trailing 0 parameters can be omitted.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example 1

Release a previously gripped workpiece with grippers on port 0 and 1 using grip index 3:

Command: MRELEASE(3,1,1,0,0) or MRELEASE(3,1,1)

Response: ACK

Example 2

Release a previously gripped workpiece with grippers on port 0, 1 and 5, 6 on a virtual GRIPLINK

controller network of two GRIPLINK-ET4 Controllers using grip index 3:

Command: MRELEASE(3,1,1,0,0,0,1,1)

Response: ACK

- 44 -

2.5.3 Wait for state transition on multiple devices – MWAITFOR

Whenever an action like GRIP or RELEASE is performed, the device state of the respective devices will

be updated upon completion. The MWAITFOR command allows to wait for this state transition on

multiple devices. It will return successfully after all selected devices have changed their state, regard-

less of the new state. If a state transition does not occur on a channel, the function returns with a

timeout error.

 To determine the current state of the devices of interest, use command DEVSTATE.

Syntax

MWAITFOR(<sel0>,…,<seln>)

Parameters

<seln> Select (1) or deselect (0) device on port n.

Port number n will be 0 to (PORTS-1) in Stand-Alone mode and 0 to 31 in Mas-

ter mode. Trailing 0 parameters can be omitted.

Response Message

ACK on success or ERR <ERRORCODE> in case of an error.

Example 1

Release a previously gripped workpiece with grippers on port 0 and 1 using grip index 3 and wait

for completion:

Command: MRELEASE(3,1,1,0,0)

Response: ACK

Command: MWAITFOR(1,1,0,0)

Response: ACK

Example 2

Grip a workpiece with grippers on port 0, 1 and 5, 6 on a virtual GRIPLINK controller network of

two GRIPLINK-ET4 Controllers using grip index 3:

Command: MGRIP(3,1,1,0,0,0,1,1)

Response: ACK

Command: MWAITFOR(1,1,0,0,0,1,1)

Response: ACK

- 45 -

2.6 Device status and diagnosis

2.6.1 Get device state – DEVSTATE

Each device has a certain status. This command is used to retrieve the device state of the selected

device. Possible device state values are given in chapter 4. Grippers are designed in a way that with

every active command (i.e. GRIP, RELEASE, HOME, DISABLE/ENABLE) always a state change occurs on

completion. It is a common practice to poll the device state and continue, as soon as this state changes.

 If no device is installed on the selected port, the function returns 0 (DS_INVALID).

Syntax

DEVSTATE[<port>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

Response Message

DEVSTATE[<port>]=<state>

<state> Device state, see table in chapter 4

Example

Retrieve the device state of the connected gripper on port 0:

Command: DEVSTATE[0]?

Response: DEVSTATE[0]=3 -> Device state is DS_RELEASED

- 46 -

2.6.2 Get value – VALUE

Read a sensor value from the given device. Devices may support one or more values that can be read.

See the device specification for details on provided sensor values.

 For gripper devices, the first value (index 0) returns the finger position in Micrometers (µm).

Syntax

VALUE[<port>][<index>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<index> Value index (0..n-1). The number of provided values depends on the connected de-

vice.

Response Message

VALUE[<port>][<index>]=<val>

<val> Sensor data as integer value

 If the sensor value is out of range, the VALUE function returns 2.147.483.647 (INT32 MAX)

Example

Retrieve the finger position of the connected gripper on port 0:

Command: VALUE[0][0]?

Response: VALUE[0][0]=42000 -> Finger position is 42 mm.

- 47 -

2.7 Device Configuration

2.7.1 Grip configuration – GRIPCFG

Read or modify the selected grip recipe/preset. Each recipe consists of a tag string and 8 parameters

that have device-specific meaning. The tag string can be used to give the recipe a meaningful name for

later identification.

 The parameters may have specific limits depending on the connected device. See the device

manual for details.

Syntax

Assign: GRIPCFG[<port>][<index>]=[<tag>,<param0>,<param1>,…,<param7>]

Query: GRIPCFG[<port>][<index>]?

Parameters

<port> Port number

 Proxy role STANDALONE: 0 to (PORTS-1)

 Proxy role MASTER: 0 to 31

<tag> String to name the specific recipe (max. 32 characters)

<param0..7> Device-specific floating-point parameter values

For WEISS ROBOTICS gripper modules, the parameters are used as follows:

<param0> No-Part limit in Micrometers (range is device-specific)

<param1> Release limit in Micrometers (range is device-specific)

<param2> Force factor in percent multiplied by 1000 (0 to 100000)

<param3..7> not used (set to 0)

For WEISS ROBOTICS WPG series, the parameters 3 to 7 can be used as follows:

<param3> Grip speed in Micrometers per second (optional, range is device-specific)

<param4> Grip acceleration in Micrometers per square second (optional, range is device-

specific)

<param5> Release speed in Micrometers per second (optional, range is device-specific)

<param6> Release acceleration in Micrometers per square second (optional, range is de-

vice-specific)

<param7> not used (set to 0)

Response Message

GRIPCFG[<port>][<index>]=[<tag>,<param0>,<param1>,…,<param7>]

- 48 -

Example

Set the recipe 0 named “Tube” for the WEISS ROBOTICS servo gripper on port 1 with a No-Part

limit of 3.5 mm, a release limit of 10.8 mm and a gripping force of 50%:

Command: GRIPCFG[1][0]=[″tube″,3500,10800,50000,0,0,0,0,0]

Response: GRIPCFG[1][0]=[″tube″,3500,10800,50000,0,0,0,0,0]

- 49 -

3 Status and error codes

After executing a command, the GRIPLINK Controller returns a status code describing the result of the

operation.

Status code Identifier Description

0 E_SUCCESS No error. Command successfully executed.

1 E_OVERRUN Data overrun

2 E_RANGE_ERROR Value out of range

3 E_NOT_AVAILABLE Function or data not available

4 E_NOT_INITIALIZED Device not initialized

5 E_TIMEOUT Timeout

6 E_INSUFFICIENT_RESOURCES Not enough memory available

7 E_CHECKSUM_ERROR Checksum error

8 E_ACCESS_DENIED Access denied

9 E_INVALID_HANDLE Invalid handle

10 E_INVALID_PARAMETER Invalid parameter

11 E_INDEX_OUT_OF_BOUNDS Index out of bounds

12 E_IO_ERROR Generic I/O error

13 E_READ_ERROR Read error

14 E_WRITE_ERROR Write error

15 E_NOT_FOUND Resource not found

16 E_NOT_OPEN File or device not open

17 E_EXISTS Resource already exists

18 E_NO_COMM Connection error

19 E_STATE_CONFLICT Invalid state

20 E_NOT_SUPPORTED Command or function not supported

21 E_INCONSISTENT_DATA Data inconsistent

- 50 -

22 E_CMD_SYNTAX Syntax error

23 E_CMD_UNKNOWN Unknown command

24 E_CMD_ABORTED Command aborted

25 E_CMD_FAILED Command failed

26 E_AXIS_BLOCKED Axis is blocked

27 E_PENDING Pending action / Not yet finished

- 51 -

4 Device status codes

The following table lists the possible return values of the DEVSTATE command. Note that some return

values are reserved to a certain group of devices (e.g., a DS_RELEASED state will usually be returned

by a gripper but not by a sensor).

Code Identifier Scope Description

0 DS_NOT_CONNECTED UNI No device connected

1 DS_NOT_INITIALIZED UNI

Device is not initialized.

This state is e.g., used by grippers that need to per-

form a reference drive at startup.

2 DS_DISABLED UNI
Idle state.

The device is operable and waiting for a command.

3 DS_RELEASED GRIPPER

Part released.

A RELEASE command was issued and the fingers

reached the release position.

4 DS_NO_PART GRIPPER

No part found.

A GRIP command was issued, but the gripper didn’t

detect a part during grasping.

5 DS_HOLDING GRIPPER

Holding a part.

A GRIP command was issued and the gripper is now

holding the part.

6 DS_ENABLED SENSOR

Enabled state.

The device is in operating state and performs its

function as intended.

7 DS_FAULT UNI

Fault state.

The device is in fault state. See the device manual

for possible recovery strategy.

- 52 -

5 Supported commands by device class

Command Gripper Sensor

CLAMP Optional -

DEVASSERT Yes Yes

DEVNAME Yes Yes

DEVPID Yes Yes

DEVSN Yes Yes

DEVSTATE Yes Yes

DEVTAG Optional Optional

DEVVENDOR Yes Yes

DEVVER Yes Yes

DEVVID Yes Yes

DISABLE Yes Yes

ENABLE Yes Yes

FLEXGRIP Optional -

FLEXRELEASE Optional -

GRIP Yes -

GRIPCFG Optional -

HOME Optional -

LED Optional -

MGRIP Yes -

MRELEASE Yes -

MWAITFOR Yes Yes

RELEASE Yes -

SETVAL Optional Optional

VALUE Yes Yes

- 53 -

WAITVAL Yes Yes

WSTR Yes Yes

- 54 -

6 List of Product and Vendor IDs

The following table lists selected WEISS ROBOTICS products with their associated Vendor and Prod-
uct IDs.

Product Primary control interface Vendor ID Product ID

CLG 30-006 IO-Link 815 60

CRG 200-085 IO-Link 815 50

CRG 30-050 IO-Link 815 40

IEG 55-020 IO-Link 815 20

IEG 76-030 IO-Link 815 20

IEG PLUS 260-030 IO-Link 815 24

IEG PLUS 260-080 IO-Link 815 25

IEG PLUS 40-020 IO-Link 815 22

IEG PLUS 40-050 IO-Link 815 23

RPG 120-020 IO-Link 815 10

RPG 75-012 IO-Link 815 10

STG 200-030 IO-Link 815 52

STG 200-085 IO-Link 815 51

STG 40-024 IO-Link 815 53

WPG 100-090 Ethernet 815 6050

WPG 300-120 Ethernet 815 6060

ZPG 75-012 IO-Link 815 30

.

© 2020 WEISS ROBOTICS GmbH & Co. KG. All rights reserved.

GRIPLINK and PERMAGRIP are registered trademarks of WEISS ROBOTICS GmbH & Co. KG. All other
trademarks are property of the respective owners.

The technical data given in this document are subject to change without notice for the purpose of
product improvement. Our products are not intended for use in life support systems or for systems in
which misconduct could lead to personal injury.

