

WSG Series of Intelligent Servo-Electric Grippers

Scripting Reference Manual

Firmware Version 4.0

December 2016

- 1 -

Contents

1 Introduction .. 4

1.1 The Lua scripting language .. 4

1.2 The scripting environment .. 4

1.2.1 Using the interactive scripting editor .. 4

1.2.2 Uploading and downloading scripts .. 5

1.2.3 Automatically run a script on startup .. 6

1.2.4 Accessing files from within a script ... 7

1.2.5 Restrictions .. 8

2 WSG-specific Lua extensions .. 9

2.1 Generic extensions .. 9

2.1.1 Error codes .. 9

2.1.2 Print a formatted string - printf() .. 9

2.1.3 Wait some time - sleep() ... 10

2.1.4 Convert bytes into a Lua number - bton() ... 10

2.1.5 Convert Lua number into bytes - ntob() .. 11

2.1.6 Convert an error code into a string – etos() .. 11

2.1.7 Convert an error code into bytes – etob() ... 12

2.1.8 Replace characters inside a string – replace() ... 12

2.2 System ... 13

2.2.1 Get system information - system.info() .. 13

2.2.2 Device tag - system.tag() ... 13

2.2.3 Get the service tag - system.servicetag() .. 14

2.2.4 Get temperature - system.temperature() ... 14

2.3 Gripper state and device information .. 15

2.3.1 Read system state flags - gripper.state() ... 15

2.3.2 Get the system state as table - gripper.flags() .. 15

2.3.3 Get gripper limits - gripper.limits() .. 16

2.4 General purpose I/O (GPIO) .. 17

2.4.1 Access a single pin - gpio.pin() ... 17

2.4.2 Set an output pin to high - gpio.set() .. 17

2.4.3 Set output Pin to low - gpio.clear().. 18

2.4.4 Access I/O pins directly - gpio.pins() ... 18

2.5 Gripping ... 19

2.5.1 Move fingers - grasping.move()... 19

2.5.2 Grip a part - grasping.grasp() ... 20

2.5.3 Release a part - grasping.release() .. 21

2.5.4 Manually clamp a part - grasping.clamp() ... 22

- 2 -

2.5.5 Manually stop clamping a part - grasping.stop_clamping() .. 23

2.5.6 Get gripper state - grasping.state() ... 24

2.5.7 Get gripper state as string – grasping.statestring() ... 25

2.5.8 Get gripper statistics - grasping.stats() .. 26

2.5.9 Reset gripper statistics - grasping.resetstats() .. 26

2.6 Motion Control ... 27

2.6.1 Speed controller gain - mc.pid() .. 27

2.6.2 Position controller gain - mc.kv() .. 28

2.6.3 Finger speed - mc.speed() ... 28

2.6.4 Finger opening width - mc.position() .. 29

2.6.5 Get block - mc.blocked() .. 30

2.6.6 Current gripping force and force limit - mc.force() ... 30

2.6.7 Get approximated gripping force - mc.aforce()... 31

2.6.8 Tare force sensors - mc.tare() ... 31

2.6.9 Overdrive Mode - mc.overdrive() .. 32

2.6.10 Finger acceleration limit - mc.acceleration() ... 33

2.6.11 Set soft limits - mc.softlimits() ... 33

2.6.12 Enable soft limits - mc.softlimits_en() ... 35

2.6.13 Soft limits reached - mc.softlimits_reached() ... 35

2.6.14 Stop current movement - mc.stop() .. 36

2.6.15 Are the fingers moving? - mc.busy().. 36

2.6.16 Advanced finger positioning - mc.move() ... 37

2.6.17 Move fingers using a ramp profile – mc.move_ramp() ... 38

2.6.18 Move fingers using a rectangular profile – mc.move_rect() 39

2.6.19 Stop in case of an error - mc.faststop() ... 39

2.6.20 Execute custom trajectory - mc.trajectory() ... 40

2.6.21 Execute homing sequence - mc.homing() ... 41

2.7 Command Interface .. 42

2.7.1 Interface – cmd.interface() .. 42

2.7.2 Get command statistics – cmd.stats() ... 42

2.7.3 Host connected? – cmd.online() ... 43

2.7.4 Register a packet ID – cmd.register() .. 44

2.7.5 Unregister a packet ID – cmd.unregister() .. 44

2.7.6 Send a data packet – cmd.send() .. 45

2.7.7 Get number of available packets – cmd.available() .. 46

2.7.8 Read a received data packet – cmd.read() .. 47

2.8 Finger control ... 48

2.8.1 Get number of fingers – finger.count() ... 48

2.8.2 Get finger type – finger.type() ... 48

2.8.3 Get or set a finger parameter – finger.param()... 49

2.8.4 Get the current finger data – finger.data().. 50

2.8.5 Digital sensor interface – finger.interface()... 51

- 3 -

2.8.6 Get finger state – finger.state() ... 54

2.8.7 Get the finger state as table - finger.flags()... 55

2.8.8 Control finger power – finger.power() .. 56

2.8.9 Get analog voltage – finger.analog() ... 56

2.8.10 Digital I/O pin – finger.iopin() .. 57

2.8.11 Set direction of digital I/O pin – finger.iodir() ... 58

2.8.12 Write data to finger – finger.write() .. 58

2.8.13 Bytes available – finger.bytes_available() ... 59

2.8.14 Read data from finger – finger.read() ... 60

2.8.15 Synchronous data transfer via SPI – finger.spi() .. 61

2.8.16 Finger configuration memory – finger.config() ... 62

2.9 Fieldbus interface ... 63

2.9.1 Get connection state – fieldbus.online() ... 64

2.9.2 Get bitrate – fieldbus.bitrate() .. 64

2.9.3 Access an I/O flag – fieldbus.flag() .. 65

2.9.4 Write/read user flags – fieldbus.flags() ... 66

2.9.5 Set one or more output flags – fieldbus.fset() .. 66

2.9.6 Clear one or more output Flags – fieldbus.fclear().. 67

2.9.7 Wait for activity – fieldbus.waitact() ... 68

Appendix A. Status codes .. 69

Appendix B. System state flags .. 71

Appendix C. Finger state flags ... 74

Appendix D. Syntax notation ... 75

- 4 -

1 Introduction

The WSG family of grippers includes a powerful scripting engine based on the LUA language that

enables you to implement application specific behavior of your gripper. The WSG gripping modules

are using LUA interpreter version 5.1.4.

1.1 The Lua scripting language

Lua is a lightweight and extensible configuration language and was developed by a research group

around Roberto Ierusalimschy at Pontifical Catholic University of Rio de Janeiro, Brazil in 1993. This

manual will not give you a complete introduction in how to program Lua, but will focus on the

gripper-specific extensions of the programming language. A good source for learning Lua and for

programming examples is the official Lua Website at http://lua.org and the Lua user’s website at

http://lua-users.org.

In addition, the following books will give you an introduction in the Lua programming language:

For beginners in programming, we recommend this book:

 K. Jung, A. Brown: Beginning Lua Programming, 2007, ISBN 0-470-06917-1

If you are already familiar with programming, you may read instead:

 R. Ierusalimschy: Lua 5.1 Reference Manual, August 2006, ISBN 85-903798-3-3

 R. Ierusalimschy: Programming in Lua, March 2006, ISBN 85-903798-2-5

There is also a German edition of the latter one:

 R. Ierusalimschy: Programmieren mit Lua, September 2006, ISBN 3-937514-22-8

1.2 The scripting environment

1.2.1 Using the interactive scripting editor

For developing and testing scripts, the WSG gripping modules contain an interactive script editor (see

Figure 1) that is accessible over its web interface. It consists of an editor with syntax highlighting and

a console window to display log messages from your script. To open the interactive script editor, go

to the gripper’s website by entering its IP address in your browser’s address line. Alternatively, you

can use the symbolic name http://wsg50-00000000.local of your gripper, replacing the “00000000”

by the serial number of your Gripper (this requires mDNS to be enabled on the gripper and an mDNS

service like “Bonjour” running on your PC). This 8 digit number can be found on the type label

located above the connectors. When accessing the WSG’s web interface, you may have to log in first,

depending on the security settings of the gripper.

 You will need administrator rights to use the interactive script editor

http://lua.org/
http://lua-users.org/

- 5 -

Go to the interactive scripting page by choosing “Scripting -> Interactive Scripting” from the main

menu. You can now either write a new script or load one from the WSG’s SD-Card by pressing the

“Open” button. To run a script, it has to be saved first. Select a name that allows an easy

identification of the script by its function. The file extension has to be “.lua”. To abort a currently

running script, press the “Stop” button.

The editor supports common hotkeys, e.g. CTRL-C for copy, CTRL-P for paste and CRTL-S for save.

1.2.2 Uploading and downloading scripts

You can either copy your scripts to the SD card manually by placing the SD card into a compatible

reader or you can use the upload feature of the WSG’s web interface, see Figure 2.

 Scripts must be located in the /user directory or any subdirectory and must end with “.lua”

to be started.

Figure 1: The Interactive Scripting Editor

- 6 -

 You need administrator rights to upload or download scripts

1.2.3 Automatically run a script on startup

Via the web interface of the WSG Gripper (go to the system settings page via “Settings -> System”),

you may specify any script from the /user directory to be automatically executed when the gripper

starts up (see Figure 3). Care should be taken that the script runs error-free. It is easy to imagine that

you can seriously disturb the normal operation of the gripper with an erroneous script. We

recommend testing the script extensively using the interactive scripting editor before using it as an

autorun script.

In autorun mode, all console outputs are discarded, unless you open the web interface and go to the

interactive scripting editor page. There, you can see the currently running script.

In case of a script error, a FAST STOP is raised and the error is written to the system log.

 Scripts must be located in the /user directory to be selectable as autostart script.

 You need administrator rights to configure the autostart feature

Figure 2: Up-/Download Page

- 7 -

1.2.4 Accessing files from within a script

You can create and access files on the WSG Gripper’s integrated SD card. This may be useful e.g. to

store gripping information on different parts that have to be gripped in the same process. The

default directory when starting a script is /user. To read the content of a file, you can use the

example code below. It accesses the file test.txt which is assumed to be located in the user directory

on the SD card. For a complete “How To” on accessing files from within LUA, please see the LUA

Manual at http://lua.org.

Example

f = assert(io.open("test.txt", "r"))

text = f:read("*all")

f:close()

print(text)

 Care should be taken if accessing a file using an absolute path, as manipulation of system-

related files (outside the /user directory) may endanger the correct operation of the gripper!

Figure 3: Configuring an autostart script

- 8 -

1.2.5 Restrictions

Even if the WSG Grippers support the complete functional range and syntax of the LUA programming

language, the following restrictions apply when running a script on the gripper hardware:

 Arithmetic calculations are done using single precision floating point functions.

 Environment variables are not available.

 Console buffer does not block if full. Prints to the console (either via “print” or “printf”) are

internally buffered with a buffer of a constant length. If the script constantly prints messages

but they are not polled by a client (i.e. the web interface’s console window is not active), the

message buffer may discard new messages if it is already full.

 The script cannot read characters from the standard input (e.g. keyboard input).

 If the script was started automatically on startup, a script error will raise a FAST STOP

condition and an entry describing the error is created in the system log.

- 9 -

2 WSG-specific Lua extensions

2.1 Generic extensions

2.1.1 Error codes

The WSG firmware provides the available error codes as global variables that can be used from

within your script. They can be used as a standard variable inside your code, e.g. to print the error

number for success to the console, you can simply write printf("E_SUCCESS = %d\n", E_SUCCESS).

Since LUA does not support constants by default, the provided variables can be changed (however

this is not a good idea!).

 For a list of the available error codes see Appendix A (chapter 2.9).

2.1.2 Print a formatted string - printf()

Print a formatted string to the console. The format string follows the same rules as the ANSI C printf()

command. The following options/modifiers are not supported: *, l, L, n, p, h. For further details on

formatting strings, see the description of string.format in the LUA Reference Manual.

 The console uses line buffering for printf() outputs. To force a line to be printed immediately,

terminate it using a carriage return ('\n') character.

 The internal buffer of the console output will hold a limited number of characters. If no

console window is open or your script prints too much text, this buffer may become full and

additional text may be lost!

Syntax

printf(fmt, […])

Parameters

fmt

Format string

… (optional)

Optional list of parameters that are output using the format described in fmt.

Return Value

none

Example

printf(“Hello World!\n”) -- outputs “Hello World” at the console

- 10 -

printf(“This is a %s: %d\n”, “ten”, 10) -- outputs “This is a ten: 10” at the console

2.1.3 Wait some time - sleep()

Pauses the script execution for a given time.

Syntax

sleep(ms)

Parameters

ms (integer)

Time to wait in milliseconds. Negative values are treated as 0.

Return Value

none

Example

sleep(1000) -- waits for 1 second

2.1.4 Convert bytes into a Lua number - bton()

Converts a table with 4 bytes representing an IEEE 754 single precision floating point number into a

LUA number.

Syntax

<number> = bton(bytes)

Parameters

bytes <table>

Table containing four integers in the range of [0..255]. Byte addressing is little endian.

Return Value

floating point number

Example

number = bton({164, 112, 157, 63})

printf(“Number is %g\n”, number) -- outputs “Number is 1.23” at the console

- 11 -

2.1.5 Convert Lua number into bytes - ntob()

Interprets a LUA number as an IEEE 754 single precision floating point number and converts it into its

byte representation.

Syntax

<number> = ntob(number)

Parameters

number <number>

LUA Floating point number.

Return Value

Returns a table with four integers in the range of [0..255] that holds the binary representation of the

passed LUA number.

Example

bytes = {}

bytes = ntob(1.23)

print(bytes) -- outputs “164 112 157 63” at the console

2.1.6 Convert an error code into a string – etos()

Some functions may return a gripper-specific error code as a return value. This function converts the

error code into given as parameter into a human readable string. For a list of error codes, see the

Appendix A.

Syntax

<string> = etos(errorcode)

Parameters

errorcode (integer)

Error code.

Return Value

returns a human readable string describing the error.

Example

s = etos(E_CMD_FAILED)

printf("Error text: %s\n", s) -- Will output: "Error text: Command failed"

- 12 -

2.1.7 Convert an error code into bytes – etob()

Convert the given error code into its two-byte representation as it is used e.g. as a return code for

custom commands. The function does not check for the validity of the given error code. For a list of

error codes, see the Appendix A.

Syntax

<table> = etob(errorcode)

Parameters

errorcode (integer)

Error code. See Appendix A for a list of error codes.

Return Value

Returns a table containing the two byte values as integer values (range 0..255).

Example

-- This will output "Error code bytes: 18, 0" at the console:

printf("Error code bytes: %d, %d\n", etob(E_CMD_FAILED))

2.1.8 Replace characters inside a string – replace()

Replace all occurrences of the old character inside a string by a new character.

Syntax

<string> = replace(str, oldch, newch)

Parameters

str (string)

String where the characters should be replaced.

oldch (string)

Character to be replaced. This string must only contain one character.

newch (string)

Replacement character. This string must only contain one character.

Return Value

Returns a copy of the given string where the characters have been replaced.

Example

-- Replace all points by commas:

s = "These are numbers: 1.234 and 3.45"

print(replace(s, ".", ",")) -- -> produces "These are numbers: 1,234 and 3,45"

- 13 -

2.2 System

2.2.1 Get system information - system.info()

Returns a table containing the system information and the gripper-specific physical limits.

Syntax

<table> = system.info()

Parameters

none

Return Value

Table containing the system information:

 <table>.serial_number = <int> Serial Number

 <table>.hw_revision = <int> Hardware revision

 <table>.sw_revision = <string> Software revision

 <table>.bl_version = <string> Bootloader version

 <table>.type = <string> System type, e.g. "WSG 50"

 <table>.macaddr = <string> The sensor’s MAC address

Example

info = {}

info = system.info()

printf("type: %s mm\n", info.type) -- outputs: “type: WSG 50”

2.2.2 Device tag - system.tag()

Sets and/or returns the system tag. The system tag is a string that can be set to any value. You can

write e.g. application specific data or the gripper location to it. The system tag can be accessed via

the command interface, too.

Syntax

<string> = system.tag([value])

Parameters

value (string), optional

If this parameter is passed, it defines the new value for the tag.

Return Value

Current tag value.

- 14 -

Example

system.tag("Example") -- Set the system tag to "Example"

printf("System tag is %s\n", system.tag()) -- outputs: "System tag is Example"

2.2.3 Get the service tag - system.servicetag()

Return the service tag of the device. The service tag is an alphanumeric string that is used to identify

the device for service purposes.

Syntax

<string> = system.servicetag()

Parameters

none

Return Value

String containing the service tag of the device

Example

tag = system.servicetag()

printf("The system service tag is %s\n", tag)

2.2.4 Get temperature - system.temperature()

Return the temperature of the device.

Syntax

<number> = system.temperature()

Parameters

none

Return Value

Temperature in degrees celsius

Example

t = system.temperature()

printf("The current system temperature is %f degC\n", t)

- 15 -

2.3 Gripper state and device information

2.3.1 Read system state flags - gripper.state()

Get the currently set system state flags. A mask can be applied to filter out specific flags. See chapter

0 for the system flags definition.

 If you want to read the system state flags as a table, use gripper.flags() instead (see chapter

2.3.2)

Syntax

<int> = gripper.state([mask])

Parameters

mask (integer), optional

If passed, only the system flags that are masked (i.e. set to HIGH) will be returned.

Return Value

Returns the currently set system state flags.

Example 1

flags = gripper.state() -- returns the current system state flags.

Example 2

if gripper.state(0x0018) then -- Test for the AXIS BLOCKED flags

 printf(" Axis blocked!\n")

end

2.3.2 Get the system state as table - gripper.flags()

Get the currently set system state flags as an associative table. The flags can be easily accessed by

using their symbolic name, see the example below. Chapter 0 lists the symbolic names of the system

flags.

 If you want to read the system state flags as an integer value, use gripper.state() instead (see

Chapter 2.3.1)

Syntax

<table> = gripper.flags()

Parameters

none

- 16 -

Return Value

Current system state flags as an associative table.

Example

flags = gripper.flags() -- returns the current system state flags.

if flags.SF_AXIS_BLOCKED == true then

 print(" Axis is blocked!")

else

 print(" Axis is not blocked!")

end

2.3.3 Get gripper limits - gripper.limits()

Returns a table containing the gripper-specific physical limits.

Syntax

<table> = gripper.limits()

Parameters

none

Return Value

Table containing the system information:

 <table>.stroke = <number> Stroke in mm

 <table>.min_speed = <number> Minimum speed of the gripper in mm/s

 <table>.max_speed = <number> Maximum speed of the grippe in mm/s

 <table>.min_acc = <number> Minimum acceleration in mm/s²

 <table>.max_acc = <number> Maximum acceleration in mm/s²

 <table>.min_force = <number> Minimum gripping force in N

 <table>.nominal_force = <number> Nominal gripping force in N (duty cycle 100%)

 <table>.overdrive_force = <number> Overdrive gripping force in N (if available)

 Overdrive mode is not supported by all WSG grippers. Please refer to the User’s Manual for

further information.

Example

info = {}

info = gripper.limits()

printf("stroke: %d mm\n", info.stroke) -- outputs: “stroke: 110 mm”

- 17 -

2.4 General purpose I/O (GPIO)

Control the GPIO interface of the gripper. The WSG 50 has two channels with one IN and one OUT

pin each.

 The GPIO scripting extension is only supported by devices that have a built-in GPIO interface.

Please refer to the User’s Manual for further information.

2.4.1 Access a single pin - gpio.pin()

Access a discrete GPIO channel. Used to change the value of a discrete GPIO pin and/or to read the

value of the corresponding input pin.

Syntax

gpio.pin(index, [state])

Parameters

index (integer)

Index of the channel to be accessed (0..1)

state (boolean), optional

Logic level to be set for the selected OUT pin. If this parameter is not given, the logic level of the OUT

pin is not changed. Can be either an integer (0..1) or a boolean value.

Return Value

The function returns the logic level of the channel’s IN pin (0 or 1).

Example

level = gpio.pin(1) -- Get the logic level of IN1

gpio.pin(0, 1) -- Set the logic level of OUT0 to logic HIGH

2.4.2 Set an output pin to high - gpio.set()

Produce a HIGH level on the OUT pins. Passing a ‘1’ results in a HIGH level of the resp. OUT pin.

Passing ‘0’ has no effect.

Syntax

gpio.set(bitvector)

Parameters

bitvector (integer)

Integer value, where every bit selects one GPIO channel. state.0 -> OUT0, state.1 -> OUT1, …

- 18 -

Return Value

none

Example

gpio.set(2) -- Sets OUT1 to logic HIGH. The logic level of OUT0 remains unchanged.

gpio.set(3) -- Sets both OUT0 and OUT1 to logic HIGH

2.4.3 Set output Pin to low - gpio.clear()

Produce a LOW level on the OUT pins. Passing a ‘1’ results in a LOW level of the resp. OUT pin while

passing ‘0’ has no effect.

Syntax

gpio.clear(bitvector)

Parameters

bitvector (integer)

Integer value where every bit selects one GPIO channel. state.0 -> OUT0, state.1 -> OUT1, …

Return Value

none

Example

gpio.clear(1) -- Clear OUT0 and leave OUT1 untouched

gpio.clear(3) -- Clears both OUT0 and OUT1

2.4.4 Access I/O pins directly - gpio.pins()

Accesses the GPIO pins directly. This function can be used to write to all OUT pins simultaneously

and/or to read from all IN pins.

Syntax

<int> = gpio.pins([bitvector])

Parameters

bitvector (integer), optional

If passed, the OUT pins will be set according to this bit vector. Output is treated as bit vector, where

bit 0 corresponds to OUT0 pin, bit 1 to OUT1, etc.

Return Value

Returns the current logic level of the IN pins as a bit vector, where bit 0 represents the logic level of

IN0, bit 1 that of IN1, etc.

- 19 -

Example

levels = gpio.pins() -- returns 2, if IN1 is HIGH and IN0 is LOW.

gpio.pins(2) -- sets OUT0 to LOW and OUT1 to HIGH

2.5 Gripping

2.5.1 Move fingers - grasping.move()

Initiate a pre-positioning movement of the fingers. The function waits until the motion has finished.

In addition, the function returns an error code as a result of the movement. The force limit set by

mc.force() is used for the movement.

grasping.move() uses an acceleration- and jerk-limited speed profile for motion (sin²x profile) as

shown below.

time

speed

time

position

grasping.move() raises a runtime error, if at least one of the following conditions is met:

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 To grip a part, please use the grasping.grasp() command instead since grasping.move() will

fail if the fingers are blocked.

 Even with installed force measurement finger (WSG-FMF), pre-positioning is always done by

approximating the force from the measured motor current, which is not as accurate as the

measurement by the force measurement finger.

Syntax

<integer> = grasping.move(opening_width, [speed])

Parameters

opening_width (number)

Target opening width of the fingers in mm

speed (number), optional

- 20 -

Positioning speed in mm/s. If not set, the speed from the last move command is taken.

Return Value

The function returns an error code describing the motion result. It can be of one of the following

values:

E_AXIS_BLOCKED: A block condition occurred while moving

E_TIMEOUT: The target position was not reached in the pre-calculated time.

For further error codes and its meanings, see Appendix A.

Example

grasping.move(10, 50) -- Move to 10mm, speed=50mm/s, wait until finished

grasping.move(50) -- Move to 50mm, speed is still 50mm/s, wait until finished

printf("Done, opening width: %.2f mm\n", mc.position())

2.5.2 Grip a part - grasping.grasp()

Grip a part with a given nominal width. As optional parameters, you can pass the finger opening

width, traveling speed and the maximum clamping travel.

The function raises a runtime error, if at least one of the following conditions is met:

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 Another movement is currently in progress.

 If a force measurement finger (WSG-FMF) is installed on the gripper, the part is gripped using

true force control. If no force measurement finger is found, the gripping force is

approximated by measuring the motor current. Please note, that this is not as accurate as a

direct force measurement.

Syntax

<boolean> = grasping.grasp([width], [speed], [clampingtravel])

Parameters

width (number), optional

Nominal width of the part to be gripped in mm. If not given, the width set by the last call to grasp() is

used. Default value on startup is 10 mm.

speed (number), optional

Gripping speed in mm/s. If not given, the speed set by the last call to grasp() is used.

Default value on startup is 50 mm/s.

clampingtravel (number), optional

- 21 -

Clamping travel in mm. After touching a part, the gripper tries to establish the gripping force by

moving the finger further to the part. This value defines a travel limit for this. If the parameter is not

given, the clamping travel set by the last call to grasp() is used.

The default value can be set up using the Web Interface (Settings|Motion Configuration -> Default

Clamping Travel).

Return Value

Returns true, if a part was gripped (i.e. the gripper state is "holding"). If no part was found or an error

occurred, the function returns false.

Example

-- Set a gripping force of 10N:

mc.force(10)

-- Grip a part with a nominal width of 10mm, a speed of 50mm and with a

-- max. clamping travel is 5mm:

if grasping.grasp(10, 50, 5) then

 printf("Part successfully gripped\n")

else

 printf("No part gripped\n")

end

2.5.3 Release a part - grasping.release()

Release a part by opening the fingers. By an optional parameter, you can specify the opening speed.

The function raises a runtime error, if at least one of the following conditions is met:

 Gripper is in FAST STOP state.

 Gripper is not referenced.

Syntax

grasping.release([width], [speed])

Parameters

width (number), optional

Opening width in mm to release the part. If not given, the width set by the last call to release() is

used. Default value on startup is the gripper’s stroke – 5mm.

speed (number), optional

Opening speed in mm/s. If not given, the speed set by the last call to release() is used.

Default value on startup is 50 mm/s.

- 22 -

Return Value

none

Example

mc.force(10) -- Set Gripping Force to 10N

-- Grip a part with a nominal width of 10mm and a speed of 50mm. Max. Clamping travel is 5mm:

while not grasping.grasp(10, 50, 5) do

 printf("No part gripped – trying again...\n")

 sleep(500)

 grasping.release(30, 100)

 sleep(2000)

end

printf("Part successfully gripped\n")

2.5.4 Manually clamp a part - grasping.clamp()

This command can be used to manually clamp a part with a defined gripping force and a defined

clamping travel. Since the speed cannot be set with this command, the gripper’s fingers should

already touch the part. Finger prepositioning can be realized e.g. using a mc.move() command (see

chapter 2.6.16). The clamping travel is the way, the fingers will move towards the part to establish

the specified clamping force. If the fingers can move further than given the clamping travel, the

gripper stops and the gripper state is set to “PART LOST”.

Note that the axis must already be blocked by the part to be gripped. Else, the command will fail.

 Once initiated the clamping of a part manually, you need to stop clamping using the

grasping.release() or grasping.stop_clamping() command (see chapters 2.5.3 and 2.5.5) prior

the issueing of another movement command.

Syntax

grasping.clamp(travel, force)

Parameters

travel (number)

Clamping travel width in mm. Measured between the two fingers (i.e. every finger will move at most

half this value). Must be a positive value. The clamping direction will be detected automatically from

the block direction.

force (number)

Clamping force in N.

Return Value

none

- 23 -

Example

force_threshold = 2.0 -- Force threshold in N to detect a part

-- Make sure a WSG-FMF force measurement finger is installed

if finger.type(0) ~= FT_FMF then

 printf("Finger 0 is not a force measurement finger\n")

 return

end

mc.homing() -- Home the gripper

mc.force(30) -- Set force limit (high enough to allow a smooth movement)

mc.move(10, 50, 0) -- Move towards the center to grip a part

-- Wait, until we touched something:

while (mc.busy() and (finger.data(0) < force_threshold)) do

 sleep(1)

end

-- Clamp the touched part:

grasping.clamp(-5, 5) -- for the WSG 50, the minimum gripping force is 5N!

printf("Holding\n")

while (mc.busy()) do

 sleep(100)

end

printf("bye!\n")

-- Stop clamping:

grasping.stop_clamping()

2.5.5 Manually stop clamping a part - grasping.stop_clamping()

Stop clamping a part after issuing a grasping.grasp() or grasping.clamp() command. This command

simply stops the force control without opening the fingers. This function will set the gripper state to

IDLE.

Syntax

grasping.stop_clamping()

Parameters

none

Return Value

none

Example

mc.force(10) -- Set Gripping Force to 10N

if grasping.grasp(10, 50, 15) then -- Grasp a part with 10 mm width and a force of 15 N

- 24 -

 printf("Part successfully gripped\n")

 sleep(3000)

-- Stop clamping:

grasping.stop_clamping()

end

2.5.6 Get gripper state - grasping.state()

Returns the current gripper state.

Syntax

<integer> = grasping.state()

Parameters

none

Return Value

Integer value holding the current gripper state. The grasping state can have one of the following

values:

Value Symbol Description

0 GS_IDLE Gripper is in idle state, i.e. it is not holding a part.

1 GS_GRIPPING
The fingers are currently closing to grip a part. The part has
not been gripped, yet

2 GS_NO_PART
The fingers have been closed, but no part was found at the
specified nominal width. This state will be active until the
next grip or release command is issued.

3 GS_PART_LOST
A part was gripped but then lost before the fingers have
been opened again. This state will be active until the next
grip or release command is issued.

4 GS_HOLDING
A part was gripped successfully and is now being hold with
the gripping force.

5 GS_RELEASING
The fingers are currently opening towards the opening
width to release a part.

6 GS_POSITIONING
The fingers are currently pre-positioned using a “move”
command.

7 GS_ERROR An error occurred.

Example

state = grasping.state()

if state == 4 then

- 25 -

 printf(“Holding a part\n”)

else

 printf(“No part!\n”)

end

2.5.7 Get gripper state as string – grasping.statestring()

Returns the current gripper state as a human-readable string.

Syntax

<string> = grasping.statestring()

Parameters

none

Return Value

String describing the current gripper state:

State Return value Description

GS_IDLE “idle” Gripper is in idle state, i.e. it is not holding a part.

GS_GRIPPING “gripping”
The fingers are currently closing to grip a part. The part has
not been gripped, yet

GS_NO_PART “no part”
The fingers have been closed, but no part was found at the
specified nominal width. This state will be active until the
next grip or release command is issued.

GS_PART_LOST “part lost”
A part was gripped but then lost before the fingers have
been opened again. This state will be active until the next
grip or release command is issued.

GS_HOLDING “holding”
A part was gripped successfully and is now being hold with
the gripping force.

GS_RELEASING “releasing”
The fingers are currently opening towards the opening
width to release a part.

GS_POSITIONING “positioning”
The fingers are currently pre-positioned using a “move”
command.

GS_ERROR “error” An error occurred.

Example

grasping.grasp(10)

printf("Current gripper state is '%s'\n", grasping.statestring())

- 26 -

2.5.8 Get gripper statistics - grasping.stats()

Get the current gripper statistics.

Syntax

<integer>, <integer>, <integer> = grasping.stats()

Parameters

none

Return Value

The function returns three parameters:

1. Number of total grips.

This counter is incremented whenever a grip command is executed and returned with an

error code of E_SUCCESS or E_CMD_FAILED

2. Number of grips where no part was found.

This counter is incremented whenever a grip commands doesn’t find a part at the given

nominal width, i.e. returns with E_CMD_FAILED.

3. Number of lost parts.

This counter is incremented, if a part was successfully gripped, but removed from in between

of the fingers before a release command was given.

Example

-- do some gripping...

for i=1,10 do

 grasping.grasp()

 sleep(500)

 grasping.release(20)

end

-- get gripper statistics:

tg, np, lp = grasping.stats()

printf("Current gripper statistics:\n")

printf("\tTotal grips: %d\n", tg)

printf("\tNo part found: %d\n", np)

printf("\tLost parts: %d\n", lp)

2.5.9 Reset gripper statistics - grasping.resetstats()

Reset the gripper statistics. All counters are set to 0.

Syntax

grasping.resetstats()

Parameters

none

- 27 -

Return Value

none

Example

grasping.resetstats()

tg, np, lp = grasping.stats()

printf("Freshly resetted gripper statistics:\n")

printf("\tTotal grips: %d\n", tg)

printf("\tNo part found: %d\n", np)

printf("\tLost parts: %d\n", lp)

2.6 Motion Control

2.6.1 Speed controller gain - mc.pid()

Set and get the PID parameters for the speed controller.

 Incorrect settings of the controller gains may result in swinging of the fingers which can

damage the mechanics. Please use this command with care!

Syntax

<number>, <number>, <number> = mc.pid([new_p, new_i, new_d])

Parameters

new_p (number), optional

New proportional gain for the speed controller. Must be a positive value.

new_i (number), optional

New integral gain for the speed controller. Must be >= 0.

new_d (number), optional

New differential gain for the speed controller. Must be >= 0.

Return Value

The function returns three parameters:

1. currently set proportional gain

2. currently set integral gain

3. currently set differential gain

If new gain values are passed, the function returns these values.

Example

p, i, d = mc.pid() -- stores the current gain values in the variables p, i and d.

- 28 -

mc.pid(3.2, 60, 0) -- sets the proportional gain to 3.2, integral to 60 and differential to

0

2.6.2 Position controller gain - mc.kv()

Set and get the position controller’s proportional gain.

 Incorrect settings of the controller gains may result in swinging of the fingers which can

damage the mechanics. Please use this command with care!

Syntax

<number> = mc.kv([kv])

Parameters

kv (number), optional

New proportional gain for the position controller. Must be a positive value.

Return Value

The function returns the currently set kv value.

Example

printf("Kv is %.2f\n", mc.kv())

-- Set kv:

mc.kv(13.2) -- sets the proportional gain of the position controller to 13.2

2.6.3 Finger speed - mc.speed()

Set and/or read back the current speed of the fingers. The speed is measured between the fingers,

i.e. a value of 100 mm/s means that every finger moves with 50 mm/s. If a speed value outside the

gripper’s limits is set, the value is clamped to the limiting value.

The function raises a runtime error, if at least one of the following conditions is met:

 Gripper is in FAST STOP state.

 Gripper is not referenced.

Syntax

<number> = mc.speed([new_speed])

Parameters

new_speed (number), optional

New speed value in mm/s.

- 29 -

Return Value

Returns the current speed of the fingers in mm/s.

Example

speed = mc.speed() -- stores the current finger speed in variable "speed".

mc.speed(50) -- set the finger speed to 50 mm/s

2.6.4 Finger opening width - mc.position()

Set and/or read back the current opening width of the fingers. The position value is treated as the

opening width of the fingers, i.e. it is measured as the distance between the fingers. If a position

outside the gripper’s limits is set, the Fingers will move against the resp. mechanical end stop. When

setting a new position, the function will block, until movement was finished. The function accepts an

optional speed parameter. If not set, the speed value from the last move/position command is used.

The function raises a runtime error, if at least one of the following conditions is met:

 Movement timed out, i.e. the target position was not reached in the calculated time.

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 The force limit for prepositioning mode can be set by the mc.force() command (see page 30

for details)

Syntax

<number> = mc.position([targetpos], [speed])

Parameters

targetpos (number), optional

New finger opening width in mm.

speed (number), optional

Finger opening speed in mm/s.

Return Value

Returns the current opening width of the fingers in mm.

Example

width = mc.position() -- stores the current opening width of the fingers in variable

"width".

mc.position(50) -- set the finger opening width to 50 mm.

- 30 -

2.6.5 Get block - mc.blocked()

Get the current blocking state of the fingers.

 The block direction can be obtained from the System Flags.

Syntax

<boolean> = mc.blocked()

Parameters

none

Return Value

The function returns true, if the fingers are blocked.

Example

print(mc.blocked()) -- print the current blocking state

2.6.6 Current gripping force and force limit - mc.force()

The function returns the current gripping force as well as the currently set force limit. If an additional

parameter is given, it will set a new force limit for future pre-positioning movements and gripping

commands.

 The value set as force limit is lost power-down.

 In prepositioning mode (using mc.position() and mc.move() commands), force always

estimated by measuring the motor current. If you want to have true force control using an

installed WSG-FMF measurement finger, please use the grasping.grasp() command instead.

Syntax

<number>, <number> = mc.force([forcelimit])

Parameters

forcelimit (number), optional

New force limit in Newton. If you set a value that is outside the gripper’s capabilities, it is clamped to

the nearest possible value.

Return Value

The function returns two parameters:

1. Current gripping force

2. Force limit value

- 31 -

Example

mc.force(50) -- Set the force limit to 50 N

print(mc.force()) -- print the current gripping force and the force limit

2.6.7 Get approximated gripping force - mc.aforce()

The function returns the approximated gripping force computed from the motor current. Especially

with force measurement fingers installed, this command is useful to determine any loads that are

applied outside the force-sensitive area of the finger.

 Without force measurement fingers installed, this is same as the gripping force returned by

mc.force() (see chapter 2.6.6).

Syntax

<number> = mc.aforce()

Parameters

none

Return Value

The function returns the actual approximated force in Newton.

Example

f = mc.aforce()

print("Approximated Force is %.1f N\n", f) -- print the approximated force

2.6.8 Tare force sensors - mc.tare()

Adjusts the force sensor output to zero, hiding any static offset error or initial load condition.

 Depending on the system settings, the force sensors are automatically zeroed with every

homing sequence, too.

 This command is only allowed, if the gripper is not in force control mode (i.e. the gripper

state must not be HOLDING when issuing this command).

Syntax

<integer> = mc.tare()

Parameters

none

Return Value

The function returns a standard error code as listed in Appendix A:

- 32 -

Example

err = mc.tare() -- Tares the connected force sensing fingers

printf("Taring done: %s\n", etos(err))

2.6.9 Overdrive Mode - mc.overdrive()

Enables or disables force overdrive mode and returns the current overdrive setting. By default, the

gripper only allows to set a gripping force that is not higher than the nominal value, which can be

applied with a duty cycle of 100%. By enabling overdrive mode, the gripping force can be increased

up to the overdrive limit (see the system.info() command in chapter 2.2.1).

 Use the overdrive feature with care! If overdrive mode is enabled and a force higher than

the nominal force value is set, the gripper’s power dissipation will be increased. Depending

on the duty cycle used, this may result in an excessive overheat and force the gripper to turn

off its power electronics. In some cases, excessive overload may also damage the device.

 Overdrive mode is not supported by all WSG grippers. Please refer to the User’s Manual for

further information.

 If overdrive mode is disabled and the current gripping force limit is beyond the gripper’s

nominal force limit, it is automatically reduced to the nominal force.

 Overdrive mode will be disabled upon termination of the script.

 When entering or leaving overdrive mode, a resp. entry is created in the system log.

Syntax

<Boolean> = mc.overdrive([enable])

Parameters

enable (Boolean), optional

If true, overdrive mode is enabled, if false, it is disabled.

Return Value

The function returns true, if the overdrive mode is currently enabled.

Example

if mc.overdrive() then

 printf("Overdrive mode is enabled\n")

else

 printf("Overdrive mode is disabled and will be enabled, now.\n")

 mc.overdrive(true); -- enable overdrive mode

end

force, limit = mc.force(100) -- Set the force limit to 100 N

printf("Current force limit is set to %.2f N\n", limit)

- 33 -

2.6.10 Finger acceleration limit - mc.acceleration()

The function returns the finger acceleration limit. If a parameter is given, it will set a new

acceleration limit for future movements, too. The acceleration limit is the maximum allowed

acceleration for the finger movement and is used for all movement-related commands, except STOP

and FAST STOP, which stop the axis immediately.

 The value set as acceleration limit is lost power-down.

Syntax

<number> = mc.acceleration([acceleration])

Parameters

acceleration (number), optional

New finger acceleration limit in mm/s². If this value is outside the gripper’s capabilities, it is clamped

to the nearest possible value.

Return Value

The function returns the currently set acceleration limit.

Example

mc.acceleration(1000) -- Set the acceleration to 1000 mm/s²

printf("Current acceleration limit is %g mm/s²", mc.acceleration())

2.6.11 Set soft limits - mc.softlimits()

The function returns the currently set soft limits. If two parameters are passed, they will be set as

new soft limit values and soft limits checking will be enabled automatically. You can only set soft

limits in both movement directions. To effectively disable checking in one direction, set its limit to a

value that is outside the gripper movement range.

- 34 -

Operating AreaRestricted AreaOperating Area

PLUS SOFT LIMIT

MINUS SOFT LIMIT

To see if soft limit checking is currently enabled or to enable/disable checking, you may use the

Enable Soft Limits command, see chapter 2.6.12.

 Any value set by this command is lost at power-down.

Syntax

<number>, <number> = mc.softlimits([minus, plus])

Parameters

minus (number), optional

New soft limit in mm, negative movement direction.

plus (number), optional

New soft limit in mm, positive movement direction.

Return Value

The function returns two parameters (even if soft limit checking is disabled):

1. Currently set limit in mm, negative direction.

2. Currently set limit in mm, positive direction.

Example

-- Set new limits:

printf("Setting negative limit: %.1f mm, positive limit: %.1f mm\n", mc.softlimits(10, 90))

-- Soft limit checking is enabled, now!

end

Figure 4: Soft Limits definition

- 35 -

2.6.12 Enable soft limits - mc.softlimits_en()

The function returns true, if the soft limits are enabled. It can also be used to enable or disable soft

limits checking by passing true or false as a parameter to this function. The soft limits have to be set

separately using the Set Soft Limits command, see chapter 2.6.11.

 Any value set by this command is lost at power-down.

Syntax

<number> = mc.softlimits_en([enable])

Parameters

enable (boolean), optional

If set to true, soft limits checking is enabled. On false, it is disabled.

Return Value

The function returns the currently set acceleration limit.

Example

if not mc.softlimits_en() then

 -- Currently no soft limits set, so we do it, now:

 printf("Setting negative limit: %.1f mm, positive limit: %.1f mm\n", mc.softlimits(10,

90))

end

-- Disable soft limits checking again:

mc.softlimits_en(false)

2.6.13 Soft limits reached - mc.softlimits_reached()

The function returns true, if one of the soft limits is violated. If soft limit checking is disabled, the

function always returns false.

Syntax

<boolean> = mc.softlimits_reached()

Parameters

none

Return Value

True, if soft limits are violated.

Example

if not mc.softlimits_reached() then

 -- Soft limits not reached:

- 36 -

 printf("Soft limits are not reached\n")

end

2.6.14 Stop current movement - mc.stop()

Abort the current movement immediately and disable the position controller. The command sets the

E_AXIS_STOPPED system flag. After issuing a stop command, the position controller is disabled, i.e.

the fingers can be moved by an externally applied force that is larger than the currently set gripping

force limit.

The position controller will be enabled again by the next positioning command.

Syntax

mc.stop()

Parameters

none

Return Value

none

Example

mc.move(10, 100) -- Move to 10mm, speed=100mm/s, wait, until target position was reached.

mc.move(100, 10, 0) -- Move to 100mm, speed=10mm/s, 0=return immediately

sleep(2000)

mc.stop() -- Stop axis

mc.force(0) -- Set force limit to minimum value, thus enabling a manual movement of the

fingers

2.6.15 Are the fingers moving? - mc.busy()

mc.busy() returns true, if the fingers are currently moving. This function is helpful when waiting for

the completion of a movement.

Syntax

<boolean> = mc.busy()

Parameters

none

Return Value

true, if fingers are currently moving or false, if the previously given movement command is already

completed.

- 37 -

Example

mc.move(10, 100)

mc.move(100, 10, 0) -- Move to 100mm, speed=10mm/s, 0=return immediately

while mc.busy() do

 printf("Current opening width: %.2f mm\n", mc. position())

 sleep(300)

end

printf("Done, opening width: %.2f mm\n", mc.position())

2.6.16 Advanced finger positioning - mc.move()

Initiate an advanced pre-positioning movement of the fingers. The function is similar to

mc.position(), but accepts certain flags to control the motion. In addition, the function returns an

error code as a result of the movement. The force limit set by mc.force() is used for the movement.

mc.move() uses an acceleration- and jerk-limited speed profile for motion (sin²x profile) as shown

below.

time

speed

time

position

mc.move() raises a runtime error, if at least one of the following conditions is met:

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 mc.move() is intended for advanced finger positioning with special flags being used (see

table below). If you simply want to move the fingers, use grasping.move() instead. To grip a

part, use the grasping.grasp() command since it offers additional features like part detection

and monitoring.

 Even with installed force measurement finger (WSG-FMF), prepositioning is always done by

approximating the force from the measured motor current, which is not as accurate as the

measurement by the force measurement finger.

Syntax

<integer> = mc.move(openingwidth, [speed], [flags])

Parameters

openingwidth (number)

- 38 -

Target opening width of the fingers in mm

speed (number), optional

Positioning speed in mm/s. If not set, the speed from the last move command is taken.

flags (integer), optional

Additional flags to control the movement. If this parameter is not given, flags are treated as

PC_WAIT.

Bit No. Symbol Description

D31..D3 unused
It is a good practice to set unused flags to 0, since they may
be used in future versions.

D2 PC_STOP_ON_BLOCK
If set, a STOP command is issued, if a mechanical block of
the fingers was detected.

D1 PC_IGNORE_BLOCK
If set, any mechanical block condition is ignored. In this case,
the function returns with a timeout error, if the target
position was not reached in a pre-calculated time.

D0 PC_WAIT
If set, the function waits, until the target position was
reached or a mechanical block was detected.

Return Value

The function returns an error code describing the movement result. It can be of one of the following

values:

E_AXIS_BLOCKED: A block condition occurred while moving (i.e. a part was gripped)

E_TIMEOUT: The target position was not reached in the pre-calculated time.

For further error codes and its meanings, see Appendix A.

Example

mc.move(10, 50) -- Move to 10mm, speed=50mm/s, don’t wait until finished

mc.move(50) -- Move to 50mm, speed is still 50mm/s, don’t wait until finished

mc.move(100, 10, 0) -- Move to 100mm, speed=10mm/s, Flags: not set

while mc.busy() do

 printf("Current opening width: %.2f mm\n", mc.position())

 sleep(300)

end

printf("Done, opening width: %.2f mm\n", mc.position())

2.6.17 Move fingers using a ramp profile – mc.move_ramp()

Same as mc.move(), but uses a ramp instead of the sin²x profile. This is an acceleration limited speed

profile, where a constant acceleration is used to increase and decrease the finger speed. This profile

is similar to the sin²x-profile, but is not jerk-limited.

- 39 -

time

speed

time

position

2.6.18 Move fingers using a rectangular profile – mc.move_rect()

Same as mc.move(), but uses a rectangular motion profile. This function is intended e.g. for clamping

actions, where the fingers don’t have to move but have to apply a preload.

 This speed profile is not acceleration-and not jerk-limited and should be used with care,

since it may degrade the mechanical properties of the gripper when used with high speeds

and finger loads.

time

speed

time

position

2.6.19 Stop in case of an error - mc.faststop()

Abort the current movement immediately and disable the position controller. A FAST STOP command

inhibits any further movement, until the user did acknowledge it. You should only use it to react on a

(severe) error condition. Every FAST STOP produces an entry in the system log file. The function can

accept a string parameter that is written into the log file, too, to identify the reason of the FAST

STOP.

Syntax

mc.faststop([reason])

Parameters

reason (string)

Text string, describing the reason of the FAST STOP.

- 40 -

Return Value

none

Example

mc.faststop("This is a test")

2.6.20 Execute custom trajectory - mc.trajectory()

Execute a trajectory. The trajectory is a sequence of position points that are directly sent to the

gripper’s interpolation engine. Every interpolation cycle (i.e. every 10 ms), a point is taken from the

sequence and used as new target opening width for the fingers. Therefore, the distance between the

points determines the moving speed of the fingers. You have to ensure, that the resulting speed

becomes not higher than the gripper’s maximum speed. The force limit set by mc.force() is applied.

The function will return immediately. Use mc.busy() to wait, until the trajectory execution is finished.

 The gripper does not test for maximum acceleration when executing a custom trajectory.

Your application has to ensure, that speed and acceleration limits of the hardware are not

violated.

The function raises a runtime error, if at least one of the following conditions is met:

 The given position violates the soft limits.

 Gripper is in FAST STOP state.

 Gripper is not referenced.

 The moving speed exceeds the system limits.

Syntax

<integer>, <integer> = mc.trajectory(trajectory)

Parameters

trajectory (table)

Table containing the position points in mm. The table must only contain numeric values.

Return Value

The function returns two parameters:

1. Error Code. For a list of error codes and their meaning, see Appendix A.

2. Number of processed points

Example

t = {}

len = 200 -- Length of the trajectory is 200 points

-- Move to start position:

- 41 -

mc.move(10, 50)

-- Calculate trajectory points:

pos = mc.position()

for i=1,len do

 t[i] = pos + (math.sin((i - 1) * math.pi / len)^2 * 80)

end

-- Execute trajectory:

error_code, cnt = mc.trajectory(t)

if error_code ~= 0 then

 -- An error occurred:

 printf("Error while executing: %s. %d points processed.\n", error2str(error_code), cnt)

else

 -- No error, wait until movement finished:

 while mc.busy() do

 sleep(50)

 end

 printf("Trajectory executed successfully\n")

end

2.6.21 Execute homing sequence - mc.homing()

Execute a homing sequence to reference the gripper. During homing, the fingers are moved to one of

the mechanical end stops. An optional parameter determines, which end stop is used. The function

raises a runtime error, if the gripper is currently in FAST STOP state.

 The best positioning performance will be achieved if homing is done into the direction you

require the better positioning accuracy.

 Depending on the system settings, the force sensors are automatically zeroed during the

homing sequence, too.

 During homing, soft limits are disabled!

 Obstacles in the movement range of the fingers and collision with these during homing may

result in a wrong reference point for the finger position!

Syntax

mc.homing([direction])

Parameters

direction (boolean), optional

If true, the end stop in positive direction will be used. If set to false, the end stop in negative moving

direction will be used. If the parameter is not given, the default end stop is used. You can use the

web interface to setup the default value.

Return Value

none

- 42 -

Example

mc.homing() -- homes in the default direction

sleep(500)

mc.homing(true) -- homes towards the positive end stop

sleep(500)

mc.homing(false) -- homes towards the negative end stop

2.7 Command Interface

2.7.1 Interface – cmd.interface()

Get the currently used command interface or to change it. When changing to a connection-based

interface, you may want to ensure that the connection is established by using the cmd.connected()

command.

Syntax

<string> = cmd.interface([name])

Parameters

name (string), optional

Name of the interface to be used for commands. Possible string values are: “none”, “RS232”, “CAN”,

“TCP”, “Profibus”. The name evaluation is not case sensitive.

 Depending on the hardware platform you are using, not all of these interfaces might be

available.

Return Value

String descriptor for the currently used interface (e.g. “CAN”)

Example

printf("Current Interface is %s\n", cmd.interface())

iface = cmd.interface("can") -- changing interface to CAN-Bus

printf("Interface changed to %s\n", iface)

2.7.2 Get command statistics – cmd.stats()

Read the command interface statistics. They give you detailed information on the health of your high

level communication with the gripper.

Syntax

<table> = cmd.stats()

- 43 -

Parameters

none

Return Value

The function returns a table with the following predefined fields:

 rx_count

Number of successfully received data packets.

 checksum_errs

Counts the checksum errors in received data packets

 length_errs

Counts the number of data packets that are too long to be accepted (the gripper accepts

payloads with a length of up to 1024 bytes)

 timeout_errs

Number of timeout errors. A timeout error occurs, if the time between two received bytes of

a packet is larger than 300ms.

 unknown_id_errs

Number of received command packets with an unknown ID.

 tx_count

Number of successfully transmitted packets.

Example

stats = cmd.stats()

printf("Command statistics:\n")

printf("\tReceived Packets: %d\n", stats.rx_count)

printf("\tRx checksum errors: %d\n", stats.checksum_errs)

printf("\tRx length errors: %d\n", stats.length_errs)

printf("\tRx timeout errors: %d\n", stats.timeout_errs)

printf("\tRx unknown IDs: %d\n", stats.unknown_id_errs)

printf("\tSent packets: %d\n", stats.tx_count)

2.7.3 Host connected? – cmd.online()

Returns true, if a host is connected via the specified command interface. This command will only be

useful on TCP and Profibus connections. On communication via CAN-Bus and RS232, the host is

assumed to be always connected.

Syntax

<Boolean> = cmd.online()

Parameters

none

- 44 -

Return Value

The function returns true, if a host is connected or false, if not. For RS232 and CAN-Bus, the function

returns always true.

Example

if cmd.online() then

 printf("Currently online!\n")

 -- Send a message:

 cmd.register(0xBB)

 cmd.send(0xBB, "This is a test!")

else

 printf("offline\n")

end

2.7.4 Register a packet ID – cmd.register()

Register a custom packet ID to send and receive data packets via the command interface. The

function raises a runtime error, if you try to register an ID that is already used, e.g. by the built-in

command set.

Syntax

cmd.register(id)

Parameters

id (integer)

Packet ID to be registered. Valid ID values are from 0 to 255.

Return Value

none

Example

id = 0xBB

cmd.register(id) -- Register ID BBh

cmd.send(id, "This is a test!") -- Send a message to the connected host via this Id

2.7.5 Unregister a packet ID – cmd.unregister()

Unregister a previously registered custom packet ID.

 You cannot unregister an ID of a built-in command.

Syntax

cmd.unregister(id)

- 45 -

Parameters

id (integer)

Packet ID to be unregistered. Valid ID values are from 0 to 255.

Return Value

none

Example

id = 0xBB

cmd.register(id) -- Register ID BBh

cmd.send(id, "This is a test!") -- Send a message to the connected host via this Id

cmd.unregister(id) -- Un-register ID BBh

cmd.send(id, "I will produce an error!") -- This line will raise a runtime error!

2.7.6 Send a data packet – cmd.send()

Send a data packet using a custom ID. The ID that is used for sending the packet has to be registered

before using cmd.register() (see chapter 2.7.4). The payload of the data packet is passed as a variable

argument list that can contain integer types, Boolean types and string types and well as tables

containing these types.

The following conversion rules will be applied:

 Integer and Number types are treated as single bytes, i.e. have a valid range of 0 to 255. If

this range is exceeded, the function raises a runtime error. To send a number value, use the

ntob() conversion function (see chapter 2.1.5).

 Boolean values are converted into a single byte set to 0 and 1, respectively.

 String values are converted into a sequence of bytes (without a trailing zero).

 Tables can contain the above types and can be nested at a total of up to 5 levels.

 The maximum length for a custom command is 65536 bytes.

 Trying to send a packet while the connection is offline will produce a runtime error.

Syntax

cmd.send(id, [...])

Parameters

id (integer)

Packet ID. Valid ID values are from 0 to 255.

..., optional

Variable argument list with one or more integer parameters (range: 0 to 255) forming the payload of

the data packet. See the description above.

- 46 -

Return Value

none

Example

id = 0xBB

cmd.register(id) -- Register ID BBh

if cmd.online() then

-- String payload:

cmd.send(id, "This is a test!")

-- Number as payload:

cmd.send(id, ntob(1.234))

-- Payload combining various types:

cmd.send(id, 0x54, 0x68, "is is a test!", {1, 2, 3}, {4, 5, ntob(6.7), { "Nested Table" }}

)

-- Payload with nested tables:

cmd.send(id, {1, 2, { 3, 4, { 5, 6, { 7, 8, { 9, 10 }}}}})

else

 printf("Sorry, currently offline!\n")

end

2.7.7 Get number of available packets – cmd.available()

Returns the number of received data packets waiting in the input buffer for being read.

 If the connection is currently offline, cmd.available() returns always 0.

Syntax

<integer> = cmd.available()

Parameters

none

Return Value

The function returns the number of data packets waiting in the reception buffer.

Example

cmd.register(0xBB) -- Register ID BBh

cmd.register(0xBC) -- Register ID BCh

cmd.register(0xBD) -- Register ID BDh

while cmd.online() do

 if cmd.available() > 0 then

 id, payload = cmd.read()

 printf("Data packet received: ID=%d, payload length=%d\n", id, #payload)

 end

end

- 47 -

2.7.8 Read a received data packet – cmd.read()

To receive data packets with a certain ID, you have first to register this ID by calling cmd.register(),

see chapter 2.7.4. You can only receive data packets which IDs are not used by the integrated

command set.

cmd.read() blocks, until a data packet was received. You can poll the state of the receive buffer by

using cmd.available(), see chapter 2.7.7.

 The payload length for received messages is limited to 1024.

Syntax

<integer>, <table> = cmd.read()

Parameters

none

Return Value

The function returns two parameters:

1. ID of the received data packet (range: 0 to 255)

2. Table containing the payload as consecutive bytes. If the received packet has no payload, the

function returns an empty table.

Example

-- This example implements a custom command (ID=0xBB) to set the GPIO’s output pins

cmd.register(0xBB) -- Register ID BBh

while true do

 if cmd.online() then

 id, payload = cmd.read()

 if #payload == 1 then

 -- Payload length is okay:

 printf("Setting outputs to %d\n", payload[1])

 gpio.pins(payload[1])

 cmd.send(id, etob(E_SUCCESS)) -- Send E_SUCCESS as return value

 else

 -- Error: Payload length mismatch:

 printf("Payload length mismatch (%d)\n", #payload)

 cmd.send(id, 15, etob(E_CMD_FORMAT_ERROR)) -- Send E_CMD_FORMAT_ERROR as return

value

 end

 else

 -- Interface is offline...

 sleep(50)

 end

end

- 48 -

2.8 Finger control

The Finger Module is used to control and communicate with active fingers connected to the sensor

port of the WSG Gripper’s base jaws. In contrast to the Lua standard, finger numbering starts at 0,

i.e. WSG Grippers with two fingers uses the indices 0 and 1.

 The finger scripting extension is only supported by devices that have a built-in sensor port

interface. Please refer to the User’s Manual for further information.

2.8.1 Get number of fingers – finger.count()

Get the number of available fingers. For the WSG, this is always 2.

Syntax

<integer> = finger.count()

Parameters

none

Return Value

Number of fingers.

Example

printf("This gripper has %d fingers\n", finger.count())

2.8.2 Get finger type – finger.type()

Get the type of the finger with the given index. There are three finger types supported:

 “generic”

This finger type has no predefined function and can be fully controlled by the script.

 “fmf”

Force Measurement Finger. Used by the gripper to control the gripping force. Accessing the

finger via finger.param() and finger.data().

 “dsa”

Tactile Sensing Finger. Accessing the finger via finger.param() and finger.data().

 The finger types are registered as global variables on startup and can be directly used from

inside your script, please see the example below.

Syntax

<string> = finger.type(index)

- 49 -

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Returns the finger type as string.

Example

for i=0,finger.count()-1 do

 t = finger.type(i)

 printf("Finger %d is a %s finger\n", i, t)

end

2.8.3 Get or set a finger parameter – finger.param()

Predefined finger types may have one or more finger-specific parameters that can be set or read

using this command.

 For the finger-specific parameters please refer to the finger’s User Manual.

Syntax

<var> = finger.param(index, descr, [value])

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

descr (string)

Descriptor for the parameter. See the list of available parameters in the finger’s User Manual.

value (type depending on the parameter), optional

If given, the parameter is changed to this value. The variable type depends on the parameter and is

listed in the finger’s User Manual.

Return Value

Returns the current value of the parameter. The type depends on the parameter and is listed in the

finger’s User Manual.

Example

-- This example prints some information about the connected

-- Tactile Sensing finger(s)

for i=0,finger.count()-1 do

- 50 -

 if finger.type(i) == "dsa" then

 -- This is a tactile sensing finger

 controllerType = finger.param(i, "dsatype")

 version = finger.param(i, "version")

 cellsX = finger.param(i, "cells_x")

 cellsY = finger.param(i, "cells_y")

 width = finger.param(i, "width")

 height = finger.param(i, "height")

 printf("Transducer type: %s (software V%s)\n", controllerType, version)

 printf("Matrix has %d x %d sensor cells ", cellsX, cellsY)

 printf("and has an active area of %.1f x %.1f mm\n", width, height)

 end

end

2.8.4 Get the current finger data – finger.data()

Read the current data from a predefined finger. It returns a single value whose format depends on

the finger type. This command is only available for fingers of predefined type.

The command will raise a runtime error, if

 you try to access a generic finger

 you try to access an unpowered finger or a finger with a communication error indicated in

the finger flags.

 For the finger-specific parameters please refer to the finger’s User Manual.

Syntax

<var> = finger.data(index)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Returns the current data from the selected finger. Only one value is returned, but its type depends

on the finger type. The returned data is described in the finger’s User Manual.

Example

-- This example tries to read the finger data

-- and print it to the console output

-- Determines the data type and print it:

function printData(m)

 local x, y

 if type(m) == "table" then

- 51 -

 -- This is a WSG-DSA frame:

 printf("Timestamp: %d\n", m.timestamp)

 -- data is a matrix:

 for y=1,#m.frame[1] do

 for x=1,#m.frame do

 printf("%4d ", m.frame[x][y])

 end

 printf("\n")

 end

 else

 -- data is a scalar value (e.g. WSG-FMF):

 printf("%.1f\n", m)

 end

end

-- Read data from all fingers that support it:

for i=0,1 do

 printf("Finger %d (%s)\n", i, finger.type(i))

 res, data = pcall(finger.data, i)

 if res == true then

 printData(data)

 printf("\n")

 else

 printf("Finger doesn't provide any data\n")

 end

end

2.8.5 Digital sensor interface – finger.interface()

Get or configure the digital sensor interface inside the gripper’s base jaw that is used to

communicate with a custom finger electronics. This command allows to set up the communication

type (SPI or UART), as well as other interface settings like bit rate, frame size, clocking polarity and

phasing (SPI).

The current interface settings can be obtained by using this function without any of the optional

parameters (e.g. finger.interface(0) for finger 0).

 Setting the interface configuration is only possible for generic fingers.

Syntax

<string> = finger.interface(index, [ifacetype], [bitrate], [framesize], [CPOL], [CPHA])

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

ifacetype (string), optional*

- 52 -

String describing the new interface to be used. Valid descriptors are

• “spi” for SPI interface

• “uart” for UART interface

• “none” to disable the interface.

bitrate (integer), optional*

Bit rate of the interface in Bits per second.

For SPI connections: available bitrates can be determined using the following formula

(n=0..255):

 If a bit rate is set that does not satisfy the formula above, the device uses the nearest

possible bit rate. To determine the actual bit rate, you may evaluate the return value of the

function.

For UART connections: only the following bitrates are allowed:

• 1.200 bit/s

• 2.400 bit/s

• 4.800 bit/s

• 9.600 bit/s

• 19.200 bit/s

• 38.400 bit/s

• 57.600 bit/s

• 115.200 bit/s

• 230.400 bit/s

• 460.800 bit/s

 Setting other bit rates as those listed above will produce a runtime error.

framesize (integer), optional*

Only for SPI communication: Size of the data frame, can be 4 to 16 bits long, see

Figure 5.

- 53 -

cpol (boolean), optional*

Only for SPI communication: Clock polarity, see Figure 6 for explanation.

cpha (boolean), optional*

Only for SPI communication: Clock phase, see Figure 6 for explanation.

 cpol = 0, cpha = 0 cpol = 1, cpha = 0

 cpol = 0, cpha = 1 cpol = 1, cpha = 1

*) To configure the sensor interface properly, the following parameters are required, depending on

the selected interface type:

Interface Type: SPI UART none

Figure 5: SPI Frame length

Figure 6: SPI Frame with available clock and phase settings

- 54 -

index required required required

ifacetype required required required

bitrate required required -

framesize required - -

cpol required - -

cpha required - -

Return Value

The function returns two parameters:

1. Interface used for communication. Can be of either

• “none” - No interface is used.

• “uart” - The UART interface is used.

• “spi” - The SPI interface is used.

2. Effective bitrate in bits per second (for interface “none”, 0 is returned).

Example

for i=0,finger.count()-1 do

 iface, speed = finger.interface(i)

 printf("Finger %d interface: %s, speed: %d bps\n", i, iface, speed)

end

-- Setting the interface of Finger 0 to UART mode with 115200 baud:

if (finger.type(0) == "generic") then

 finger.interface(0, "uart", 115200)

end

-- Setting the interface of Finger 1 to SPI mode with 8 MBit/s, 8 bits per frame and

CPOL=CPHA=0:

if (finger.type(1) == "generic") then

 finger.interface(1, "spi", 8000000, 8, 0, 0)

end

2.8.6 Get finger state – finger.state()

Get the state of the finger with the given index. For a description of the Finger State Flags, see

Appendix C (chapter 0).

 If you want to read the finger state flags as a table, use finger.flags() instead (see Chapter

2.8.7)

Syntax

<integer> = finger.state(index [, mask])

Parameters

index (integer)

- 55 -

Finger index. Range is 0..finger.count()-1.

mask (integer), optional

If passed, only the finger state flags that are masked (i.e. set to HIGH) will be returned.

Return Value

Returns the currently set finger state flags.

Example

for i=0,finger.count()-1 do

 if finger.state(i, 0x0001) then -- Test for the FINGER ENABLED flag

 printf("Finger %d is enabled! (state: %.4xh)\n", i, finger.state(i))

 else

 printf("Finger %d is disabled!\n", i)

 end

end

2.8.7 Get the finger state as table - finger.flags()

Get the currently set Finger State Flags as an associative table. The flags can be easily accessed by

using their symbolic name, see the example below. Chapter 0 lists the symbolic names of the system

flags.

 If you want to read the system state flags as an integer value, use finger.state() instead (see

Chapter Get finger state – finger.state()2.8.6)

Syntax

<table> = finger.flags(index)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Current finger state flags as an associative table.

Example

flags = finger.flags(0) -- returns the state flags of finger 0.

if flags.FF_POWER_ON == true then

 print(" Finger 0 is switched on!")

else

 print(" Finger 0 is switched off!")

end

- 56 -

2.8.8 Control finger power – finger.power()

Enable or disable the power supply of the given finger. You can only control the power of generic

fingers (see chapter 2.8.2), power control for predefined finger types is not possible.

This command will raise a runtime error, if

 you try to change the power of a finger whose type is different from “generic”

 you try to enable power of a short-circuited finger

 You may check the current power state of the finger by evaluating its state flags via

finger.state(), see chapter 2.8.2.

Syntax

finger.power(index, enabled)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

enabled (integer)

Set to true to enable power for the resp. finger or to false to disable power.

Return Value

none

Example

if finger.type(0) == "generic" then

 printf("Toggle power of finger 0...\n")

 for i=1,5 do

 printf("Step %d of 5\n", i)

 finger.power(0, true) -- enable power of finger 0

 sleep(2000)

 finger.power(0, false) -- disable power of finger 0

 sleep(2000)

 end

 printf("done!\n")

else

 printf("Not a generic finger, cannot change its power state.\n")

end

2.8.9 Get analog voltage – finger.analog()

Get the analog voltage from the finger interface with the given index. The voltage signal is between 0

and 2.5 V. This command is only available for generic fingers.

- 57 -

 This command is only supported by devices that have a built-in analog input on the sensor

interface. Please refer to the User’s Manual for further information.

Syntax

<number> = finger.analog(index)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

Return Value

Returns the voltage at the analog input pin of the selected finger interface in Volts.

Example

while true do

 printf("Analog input: %.2fV\n", finger.analog(0)) -- Get the analog input voltage of

finger 0

 sleep(500)

end

2.8.10 Digital I/O pin – finger.iopin()

Get or set the state of the digital I/O pin on the finger interface.

 This command is only supported by devices that have a built-in digital I/O pin on the sensor

interface. Please refer to the User’s Manual for further information.

Syntax

<state> = finger.iopin(index [, state])

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

state (integer), optional

I/O pin state. Set to 0 or 1.

Return Value

Returns the current state of the digital I/O pin.

Example

state = finger.iopin(0) -- Get I/O pin state of finger 0

if (state == 0) then

- 58 -

 finger.iopin(1, 1) -- Set I/O pin state of finger 1 to “high”

end

2.8.11 Set direction of digital I/O pin – finger.iodir()

Set direction of digital I/O pin to input or output.

 This command is only supported by devices that have a built-in digital I/O pin on the sensor

interface. Please refer to the User’s Manual for further information.

Syntax

<dir> = finger.iodir(index [, direction])

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

direction (integer), optional

I/O pin direction. Set to 0 for input or 1 for output.

Return Value

Returns the voltage current direction of the digital I/O pin.

Example

finger.iodir(0, 1) -- Set finger 0 I/O pin to output

2.8.12 Write data to finger – finger.write()

Write the given data to the indexed finger. Direct communication with the finger is only possible for

generic fingers.

The data to be written is passed as a variable argument list that can contain integer types, Boolean

types and string types as well as tables containing these types.

The following conversion rules will be applied:

 Integer and Number types are treated as single bytes, i.e. have a valid range of 0 to 255. If

this range is exceeded, the function raises a runtime error. To send a number value, use the

ntob() conversion function (see chapter 2.1.5).

 Boolean values are converted into a single byte set to 0 and 1, respectively.

 String values are converted into a sequence of bytes (without a trailing zero).

 Tables can contain the above types and can be nested at a total of up to 5 levels.

This command will raise a runtime error, if

 you try to write to a finger with predefined finger type

 you try to write to an unpowered finger

- 59 -

 the finger is not properly configured or configuration cannot be read

 If SPI is used for communication with the finger, finger.write() uses 16-bit frames for data

exchange, even if the frame size is configured to 8 or less bits. This means that two

consecutive bytes are used for each frame, e.g. to write 4 frames (0x0001, 0x0002, 0x0003,

0xF004) from finger 0 via SPI, use finger.write(0,{1,0,2,0,3,0,4,0xF0}).

 If SPI is used for communication, the received data that was clocked in while transmitting is

discarded. Use the finger.spi() command, if you require to receive and transmit

simultaneously.

Syntax

finger.write(index, ...)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

...

Variable arguments list containing the data to be sent. See description above.

Return Value

none

Example

if finger.type(0) == "generic" then

 for i=1,10 do

 finger.write(0, "Hello Finger, this is a test: "..tostring(i).."\n")

 end

else

 printf("Cannot send data to a non-generic finger.\n")

end

2.8.13 Bytes available – finger.bytes_available()

Returns the number of bytes waiting in the input buffer of the given finger. For SPI communication,

the function always returns 2, since SPI transfers aren’t internally buffered.

The function returns 0 for non-generic fingers or if the finger is unpowered or not properly

configured.

Syntax

<integer> = finger.bytes_available(index)

Parameters

index (integer)

- 60 -

Finger index. Range is 0..finger.count()-1.

Return Value

Number of bytes waiting in the input buffer.

Example

if finger.type(0) == "generic" then

 printf("%d bytes available\n", finger.bytes_available(0))

end

2.8.14 Read data from finger – finger.read()

Read data from the finger with the given index. Direct communication is only possible for generic

fingers.

finger.read() returns the data in form of a table containing the received bytes. You can optionally

specify the number of bytes to be read. The function blocks in case there is not enough data inside

the receive buffer. If you don’t specify the number of bytes to be read, the function returns all

available data or an empty table, if there is currently no data available.

This command will raise a runtime error, if

 you try to read from a finger whose type is different from “generic”

 you try to read from an unpowered finger

 the finger is not properly configured or configuration cannot be read

 If SPI is used for communication with the finger, finger.read() uses 16-bit frames for data

exchange, even if the frame size is configured to 8 or less bits. This means that each frame is

returned as two consecutive bytes, e.g. to read 4 frames from finger 0 via SPI, use rxdata =

finger.read(0, 8). The result will be a table containing 8 bytes that represent the 4 frames.

 If SPI is used for communication, the gripper clocks out zeros to read the data. Use the

finger.spi() command, if you require to receive and transmit simultaneously.

Syntax

<table> = finger.read(index, [count])

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

count (integer), optional

Number of bytes to be read. If you try to read more bytes than currently available, the function will

not return, until the given number of bytes is available.

- 61 -

Return Value

Table containing the received data.

Example

if finger.type(0) == "generic" then

 while true do

 data = finger.read(0) -- read data from finger 0

 if #data > 0 then

 for i=1,#data do -- print out all data, assuming it is ASCII coded.

 printf("%c", data[i])

 end

 end

 end

else

 printf("Cannot read data from a non-generic finger.\n")

end

2.8.15 Synchronous data transfer via SPI – finger.spi()

Exchange data with the finger with the given index. Direct communication is only possible with

generic fingers.

 This command can only be used, if the finger is configured to use the SPI interface and is

intended as an alternative to finger.read() and finger.write() supporting true bidirectional

data transfers.

The data to be written is passed as a variable argument list that can contain integer types, Boolean

types and string types as well as tables containing these types. The length of the given table defines

the number of frame transfers to be made.

The following conversion rules will be applied:

 Integer and Number types are treated as single frame, i.e. have a valid range of 0 to 65535

for a frame width of 16 bits. If this range is exceeded, the function raises a runtime error.

 Boolean values are converted into a single frame whose content is set to 0 or 1, respectively.

 String values are converted into a sequence of frames (without a trailing zero), one frame

each character.

 Tables can contain the above types and can be nested at a total of up to 5 levels.

The simultaneously read data is returned as a table containing the single frames. Received data is

assumed to be unsigned, so each value is in the range of 0 to 65535.

This command will raise a runtime error, if

 you try to communicate with a non-generic finger

 you try to communicate with an unpowered finger

 the finger is not properly configured or configuration cannot be read

- 62 -

Syntax

<table> = finger.spi(index, data)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

data (table)

Frame data to be sent. See conversion rules above.

Return Value

Table containing the received frame data. It will be of the same length as the given transmit data

table.

Example

if finger.type(1) == "generic" then

 while true do

 sleep(1000)

 rxdata = finger.spi(1, 0x1234) -- SPI transfer with finger 0

 for i=1,#rxdata do -- print out the received data

 printf("%.4Xh ", rxdata[i])

 end

 printf("\n")

 end

else

 printf("Cannot read data from a non-generic finger.\n")

end

2.8.16 Finger configuration memory – finger.config()

If the finger has a built-in configuration memory, this function allows you to read or write its content.

 Accessing the finger configuration is only possible for generic fingers.

The finger configuration can be stored as value pairs in the form of “descriptor” = “value”.

finger.config(index) will always return an associative table containing the configuration value pairs. If

you want to store an updated configuration set to the finger’s memory persistently, you may pass an

optional table to the function containing the value pairs.

 Neither values nor descriptors must contain Line Feeds (0Ah) or “=” characters, as these are

used as internal storage formatters.

 You should never set the descriptor key “type” manually to something different than

FT_GERERIC, since this may render the Finger unusable !!!

- 63 -

Syntax

<table> = finger.config(index, data)

Parameters

index (integer)

Finger index. Range is 0..finger.count()-1.

data (table)

New configuration data to be stored. You should pass an associative table using string descriptor keys

(see the example below).

Return Value

Table containing the current finger configuration.

Example

if finger.type(1) == "generic" then

 -- read the configuration of Finger 1:

 cfg = finger.config(1)

 -- Print the current finger configuration:

 for key in pairs(cfg) do

 print(key, cfg[key])

 end

 -- Add a custom value pair to the configuration:

 cfg["key"] = 1.05

 -- Store the updated configuration to the finger’s nonvolatile memory:

 finger.config(1, cfg)

else

 printf("Cannot read the configuration data from a non-generic finger.\n")

end

2.9 Fieldbus interface

This module extends the scripting environment with fieldbus functionality and virtual I/O terminals

that can be used to interact with the connected PLC.

 The Fieldbus scripting extension is only supported by devices that have at least one built-

in/licensed fieldbus interface. Please refer to the WSG Fieldbus Manual for further

information.

- 64 -

Virtual I/O over Fieldbus

In addition to the gripping command interface, the WSG Grippers have 8 user input flags (IF1 to IF8)

and eight user output flags (OF1 to OF8) that can be independently controlled. From the PLC side,

they can be accessed as a normal input or output respectively, thus enabling an effective data

exchange between a PLC program on the one side and the user script running on the WSG Gripper on

the other.

 For further details about the WSG’s fieldbus Interface, please see the “WSG Fieldbus

Interface Manual”

2.9.1 Get connection state – fieldbus.online()

Return the state of the fieldbus connection.

Syntax

<online> = fieldbus.online()

Parameters

no parameters expected

Return Value

true, if the device is online.

Example

while fieldbus.online() do

 -- Do something here...

end

2.9.2 Get bitrate – fieldbus.bitrate()

Return the currently used fieldbus communication bit rate.

Syntax

<bitrate> = fieldbus.bitrate()

Parameters

no parameters expected

Return Value

Bitrate in bits/s. If the connected fieldbus does not support a specific bitrate (e.g. Modbus/TCP,

Profinet), 0 is returned.

Example

if fieldbus.online() then

- 65 -

 br = fieldbus.bitrate()

 printf("Bitrate: %d bit/s\n", br)

else

 printf("Fieldbus interface is offline\n")

end

2.9.3 Access an I/O flag – fieldbus.flag()

Read the state of the user input flag (IF) with the given index and optionally change the value of the

corresponding user output flag (OF). This command can be used in conjunction with the PLC program

to implement custom behavior on the device using scripts.

Syntax

<value> = fieldbus.flag(index, [setvalue])

Parameters

index (integer)

User Flag index. Range is 1..8.

setvalue (bool), optional

New value for the indexed output user flag (OF).

Return Value

Current value of the input user flag (IF) as integer (i.e. ‘0’ or ‘1’).

Example

-- Movement speed is determined by the state of Input Flag 1

-- State of Output Flags 1 and 2 are toggled according to the position reached

POS_A = 10

POS_B = 60

position = POS_A

fieldbus.fclear(0xFF) -- reset Output User Flags

while fieldbus.online() do

 -- Determine speed from the state of Input User Flag 1:

 if fieldbus.flag(1) == 0 then

 speed = 50.0

 else

 speed = 10.0

 end

 -- move and wait while busy:

 mc.move(position, speed, 1)

 -- Toggle target position:

 if position == POS_A then

- 66 -

 fieldbus.flag(1, 0)

 fieldbus.flag(2, 1) -- set Output User Flag 2 as ack to the PLC

 position = POS_B

 else

 fieldbus.flag(1, 1) -- set Output User Flag 1 as ack to the PLC

 fieldbus.flag(2, 0)

 position = POS_A

 end

end

2.9.4 Write/read user flags – fieldbus.flags()

Read the state of all user input flags (IF) and optionally change the value of all user output flag (OF).

This command can be used in conjunction with the PLC program to implement custom behavior on

the device using scripts.

 if you want to read the state of a single flag or manipulate it, you can use the fieldbus.flag()

command instead.

Syntax

<value> = fieldbus.flags([setvalue])

Parameters

setvalue (integer), optional

New value for the output user flags (OF) as a bit field value, i.e. bit 0 of setvalue corresponds to OF1,

bit 1 to OF2, …

Return Value

Current value of the input user flags (IF) as a bit field value (i.e. bit 0 has state of IF1, bit 1 of IF2, …).

Example

-- Simple counter example. The counting value is written to the Profibus Output Flags (OF)

count = 0

while fieldbus.online() do

 count = count + 1

 if count == 256 then

 count = 1

 end

 fieldbus.flags(count) -- write counting value to the Profibus Output Flags

 sleep(500)

end

2.9.5 Set one or more output flags – fieldbus.fset()

Set the state of one or more user output flags (OF) to ‘1’.

- 67 -

Syntax

fieldbus.fset(mask)

Parameters

mask (integer)

A bit field value for the output user flags (OF) where bit 0 corresponds to OF1, bit 1 to OF2, and so

on.

A ‘1’ in the bit field will set the corresponding OF while a ‘0’ has no effect.

Return Value

no return value.

Example

-- Set OF1, OF5 and OF7 (mask is 01010001b or 0x51)

if fieldbus.online() then

 fieldbus.fset(0x51)

end

2.9.6 Clear one or more output Flags – fieldbus.fclear()

Set the state of one or more user output flags (OF) to ‘0’.

Syntax

fieldbus.fclear(mask)

Parameters

mask (integer)

A bit field value for the output user flags (OF) where bit 0 corresponds to OF1, bit 1 to OF2, and so

on.

A ‘1’ in the bit field will clear the corresponding OF while a ‘0’ has no effect.

Return Value

no return value.

Example

-- Clear OF1, OF5 and OF7 (mask is 01010001b or 0x51)

if fieldbus.online() then

 fieldbus.fclear(0x51)

end

- 68 -

2.9.7 Wait for activity – fieldbus.waitact()

Wait for a state transition on one or more user input flags (IF). An optional timeout can be used. Use

this function, if you have to wait on a change of certain input flags.

Syntax

<integer>, <integer> = fieldbus.waitact(mask, [timeout])

Parameters

mask (integer)

A bit field value for the input user flags (IF) that shall be monitored, where bit 0 corresponds to OF1,

bit 1 to OF2, and so on. Write a ‘0’ in the bit field at the flag position that has not to be monitored.

timeout (integer), optional

An optional timeout in milliseconds. If no activity on the selected user flags occurs after this time, the

function returns with activity = 0.

Return Value

Two parameters are returned:

1. Parameter: “activity” (integer) is a bit field with ‘1’s at the position of the changed input

flags.

2. Parameter: “state” (integer) is the input flag state after the change. This can be used e.g. to

detect the transition direction, i.e. raising or falling edge.

Example

-- Wait for Activity on IF1:

activity, state = fieldbus.waitact(0x01)

if activity ~= 0 then

 printf("Activity detected!\n")

 if state > 0 then

 printf("Raising edge\n")

 else printf("Falling edge\n")

end

- 69 -

Appendix A. Status codes

Status code Symbol name Description

0 E_SUCCESS No error occurred, operation was successful

1 E_NOT_AVAILABLE Function or data is not available

2 E_NO_SENSOR No measurement converter is connected

3 E_NOT_INITIALIZED Device was not initialized

4 E_ALREADY_RUNNING The data acquisition is already running

5 E_FEATURE_NOT_SUPPORTED The requested feature is currently not available

6 E_INCONSISTENT_DATA One or more parameters are inconsistent

7 E_TIMEOUT Timeout error

8 E_READ_ERROR Error while reading data

9 E_WRITE_ERROR Error while writing data

10 E_INSUFFICIENT_RESOURCES No more memory available

11 E_CHECKSUM_ERROR Checksum error

12 E_NO_PARAM_EXPECTED A Parameter was given, but none expected

13 E_NOT_ENOUGH_PARAMS
Not enough parameters for executing the
command

14 E_CMD_UNKNOWN Unknown command

15 E_CMD_FORMAT_ERROR Command format error

16 E_ACCESS_DENIED Access denied

17 E_ALREADY_OPEN Interface is already open

18 E_CMD_FAILED Error while executing a command

19 E_CMD_ABORTED Command execution was aborted by the user

20 E_INVALID_HANDLE Invalid handle

21 E_ NOT_FOUND Device or file not found

22 E_ NOT_OPEN Device or file not open

23 E_IO_ERROR Input/Output Error

24 E_INVALID_PARAMETER Wrong parameter

25 E_INDEX_OUT_OF_BOUNDS Index out of bounds

- 70 -

26 E_CMD_PENDING
No error, but the command was not completed,
yet. Another return message will follow including
an error code, if the function was completed.

27 E_OVERRUN Data overrun

28 RANGE_ERROR Range error

29 E_AXIS_BLOCKED Axis blocked

30 E_FILE_EXISTS File already exists

- 71 -

Appendix B. System state flags

The System state flags are arranged as a 32-bit wide integer value that can be read using the function

system.state() (see chapter 2.3.1). Each bit has a special meaning listed below.

Bit No. Flag name Description

D31..21 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D20 SF_SCRIPT_FAILURE

Script error.

An error occurred while executing a script and the script
has been aborted. This flag is reset whenever a script is
started.

D19 SF_SCRIPT_RUNNING

A script is currently running.

The flag is reset if the script either terminated normally, a
script error occurred or the script has been terminated
manually by the user.

D18 SF_CMD_FAILURE
Command error.

The last command returned an error.

D17 SF_FINGER_FAULT

Finger fault.

The status of at least one finger is different from
“operating” and “not connected”. Please check the finger
flags for a more detailed error description.

D16 SF_CURR_FAULT

Engine current error.

The engine has reached its maximum thermal power
consumption. The flag will be reset automatically as soon
as the engine has recovered. Then the corresponding Fast
Stop can be committed.

D15 SF_POWER_FAULT
Power error.

The power supply is outside the valid range.

D14 SF_TEMP_FAULT

Temperature error.

The gripper hardware has reached a critical temperature
level. All motion related commands are disabled until the
temperature falls below the critical level.

D13 SF_TEMP_WARNING

Temperature warning.

The gripper hardware will soon reach a critical
temperature level.

- 72 -

D12 SF_FAST_STOP

Fast stop.

The gripper has been stopped due to an error condition.
You have to acknowledge the error in order to reset this
flag and to re-enable motion related commands.

D11..10 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D9 SF_FORCECNTL_MODE

Force control mode.

True Force Control is currently enabled by using the
installed Force Measurement Finger (WSG-FMF). If this
flag is not set, the gripping force is controlled by
approximation based on the motor current.

D8 SF_OVERDRIVE_MODE

Overdrive mode1.

Gripper is in overdrive mode and the gripping force can
be set to a value up to the overdrive force limit.
If this bit is reset, the gripping force cannot be higher
than the gripper’s nominal gripping force value.

D7 SF_TARGET_POS_REACHED

Target position reached.

Set if the target position was reached. This flag is not
synchronized with SF_MOVING, so it is possible that
there is a delay between SF_MOVING being reset and
SF_TARGET_POS becoming active.

D6 SF_AXIS_STOPPED

Axis stopped.

A previous motion command was aborted using the stop
command. This flag is reset on the next motion
command.

D5 SF_SOFT_LIMIT_PLUS

Positive direction soft limit reached.

The fingers reached the defined soft limit in positive
moving direction. A further movement into this direction
is not allowed anymore. This flag is cleared, if the fingers
have been moved away from the soft limit position.

D4 SF_SOFT_LIMIT_MINUS

Negative direction soft limit reached.

The fingers reached the defined soft limit in negative
moving direction. A further movement into this direction
is not allowed anymore. This flag is cleared, if the fingers
have been moved away from the soft limit position.

1 Overdrive mode is not supported by all WSG grippers. Please refer to the User’s Manual for further

information.

- 73 -

D3 SF_BLOCKED_PLUS

Axis is blocked in positive moving direction.

Set if the axis is blocked in positive moving direction. The
flag is reset if either the blocking condition has been
resolved or a stop command has been issued.

D2 SF_BLOCKED_MINUS

Axis is blocked in negative moving direction.

Set if the axis is blocked in negative moving direction. The
flag is reset if either the blocking condition has been
resolved or a stop command has been issued.

D1 SF_MOVING

The fingers are currently moving.

This flag is set whenever a movement is started (e.g.
MOVE command) and reset automatically if the
movement stops.

D0 SF_REFERENCED

Fingers referenced.

If set, the gripper is referenced and accepts movement
commands.

- 74 -

Appendix C. Finger state flags

The finger state flags are arranged as a 16-bit wide integer value that can be read using the function

finger.state() (see chapter 2.8.1). Each bit has a special meaning listed below.

Bit No. Flag Name Description

D15..10 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D9 FF_COMM_FAULT
Communication fault.

A communication error occurred during runtime.

D8 FF_POWER_FAULT

Power fault.

An over-current condition was detected at the resp.
finger.

D7..2 reserved
These bits are currently unused but may be used in a
future release of the WSG firmware.

D1 FF_CONFIG_AVAIL

Configuration available.

If the connected finger provides a configuration memory
and its content is valid, this bit is set.

D0 FF_POWER_ON
Power enabled.

If true, the finger is powered up.

- 75 -

Appendix D. Syntax notation

The following command syntax notation is used throughout this document:

Parameters

a Denotes a mandatory parameter

[a] Denotes an optional parameter

{a, b, c} Denotes a selection of mandatory parameters (exactly one must be present)

[{a, b, c}] Selection of optional parameters (either exactly one or none must be present)

Values

<integer> An integer value

<number> A floating point value

<string> A string literal

<table> A table

<var> variable type

© Weiss Robotics GmbH & Co. KG. All rights reserved.

The technical data mentioned in this document can be changed to improve our products without prior
notice. Used trademarks are the property of their respective trademark owners. Our products are not
intended for use in life support systems or systems whose failure can lead to personal injury.

